Sistema de Bicicletas Compartidas de Bogotá

Informe Técnico
C40 Cities Finance Facility

Marzo 2021
SOBRE CFF

El programa C40 Cities Finance Facility (CFF) es una colaboración entre el Grupo de Liderazgo Climático – C40 Ciudades por el Clima y la Agencia Alemana para el Desarrollo (GIZ) GmbH. CFF apoya técnicamente a las ciudades de países en desarrollo en la estructuración de proyectos para acceder a financiamiento, con el fin de reducir emisiones y detener el aumento de la temperatura mundial en 1.5 °C, fortaleciendo la resiliencia contra los impactos del cambio climático. CFF está financiada por el Ministerio Federal Alemán para la Cooperación y el Desarrollo Económico (BMZ), la Fundación del Fondo de Inversión para la Infancia (CIFF), el Gobierno del Reino Unido y la Agencia de los Estados Unidos para el Desarrollo Internacional (USAID).

Publicado por:
C40 Cities Finance Facility

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Oficinas:
Bonn and Eschborn, Alemania
Potsdamer Platz 10
10785 Berlin, Alemania

E contact@c40cff.org
W c40cff.org

Responsable:
Logit Engenharia Consultiva Ltda.
Av. Eusébio Matoso 690, 6º. Andar
São Paulo – SP – Brasil
CEP 05423-000
ÍNDICE

1. Introducción .. 7
 1.1 Histórico .. 7
 1.2 Estructuración de los sistemas de bicicletas compartidas en 2020 ... 8
 1.3 Premisas y características preliminares ... 9

2 ESTRUCTURACIÓN TÉCNICA ... 14
 2.1 Estimación de la demanda y propuesta de zonas de operación .. 14
 2.1.1 Consideraciones iniciales sobre la metodología .. 14
 2.1.2 Encuesta de preferencia declarada (PD) ... 15
 2.1.3 Calibración de los modelos de elección modal .. 31
 2.1.4 Resultados .. 37
 2.1.5 Análisis de sensibilidad .. 40
 2.1.6 Metodología para estimación de demanda ... 48
 2.1.7 Alternativas de zonas de operación .. 57
 2.1.8 Estimación de demanda .. 71
 2.1.9 Análisis de sensibilidad ... 83
 2.2 Recomendación de zona de operación .. 85
 2.2.1 Dimensiones mínimas recomendadas para el CAMEP .. 86
 2.2.2 Zona de operación mínima para el CAMEP ... 88
 2.2.3 Zona de operación de permisos ... 91
 2.2.4 Zona de operación en el caso de permisos y CAMEP simultáneos 91
 2.3 Dimensionamiento de los sistemas .. 93
 2.3.1 Número de viajes por bicicleta por día .. 93
 2.3.2 Densidad de estaciones y bicicletas ... 98
 2.3.3 Consideraciones sobre la demanda del día medio ... 101
 2.3.4 Dimensionamiento general .. 101
 2.3.5 Dimensionamiento de CAMEP, Permisos y escenario combinado 105
 2.3.6 Dimensionamiento Alternativo de CAMEP, Permisos y escenario combinado 110
 2.4 Especificaciones técnicas ... 115
 2.4.1 Estacionamiento de bicicletas sin anclaje (permisos) .. 115
 2.4.2 Estaciones de bicicletas con anclaje (sistema CAMEP) ... 127
 2.4.3 Bicicletas .. 141

3
3 ESTRUCTURACIÓN LEGAL E INSTITUCIONAL ... 144

3.1 Identificación y análisis del marco institucional y los instrumentos legales para la implementación y operación. 144

3.1.1 Análisis del marco legal y regulatorio relevante para la implementación de los sistemas de bicicletas públicas o compartidas en Colombia... 144

3.1.2 Análisis de los instrumentos legales para implementación y operación de un sistema de bicicletas públicas o compartidas ... 151

3.2 Análisis de factibilidad legal e institucional ... 157

3.2.1 Análisis del esquema legal e institucional propuesto en estudios o procesos anteriores... 157

3.2.2 Análisis de la normatividad local vigente ... 159

3.2.3 Análisis de factibilidad de implementar fuentes alternativas de ingreso.. 162

3.2.4 Marco legal e institucional propuesto ... 165

3.2.5 Instrumentos y documentos legales para la implementación y operación del sistema de bicicletas públicas o compartidas en Bogotá .. 171

4 CARACTERIZACIÓN DEL MERCADO ... 173

4.1 Tipos de SBC existentes ... 173

4.2 Factores relevantes a considerar para la implementación de un SBC .. 175

4.2.1 Cambios en el mercado de sistemas dockless 175

4.2.2 Plazos de permiso o de contrato ... 177

4.2.3 Patrocinios y publicidad ... 178

4.2.4 Retribución por aprovechamiento del espacio público............... 179

4.2.5 Competición en el mercado ... 180

4.2.6 Resumen de los principales factores .. 180

ANEXOS ... 182

Referencias ... 183
PÁGINA DE CONTROL DEL DOCUMENTO

<table>
<thead>
<tr>
<th>Versión</th>
<th>Fecha de entrega</th>
<th>Descripción</th>
<th>Comentarios recibidos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fecha</td>
</tr>
<tr>
<td>V-1.1</td>
<td>13/07/2020</td>
<td>Versión inicial</td>
<td>11/07/2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11/07/2020</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22/07/2020</td>
</tr>
<tr>
<td>V-1.2</td>
<td>26/07/2020</td>
<td>Versión ajustada</td>
<td>24/08/2020</td>
</tr>
<tr>
<td>V-2.0</td>
<td>17/09/2020</td>
<td>Versión ajustada</td>
<td>5/10/2020</td>
</tr>
<tr>
<td>V-3</td>
<td>16/10/2020</td>
<td>Versión ajustada</td>
<td>06/01/2021</td>
</tr>
<tr>
<td>V-4</td>
<td>20/01/2020</td>
<td>Versión ajustada</td>
<td></td>
</tr>
</tbody>
</table>
LISTA DE ABRÉVIACIONES

APP – Alianza Público-Privada

CAMEP - Contrato de Aprovechamiento y Mantenimiento del Espacio Público

CFF – C40 Cities Finance Facility

COP – Pesos Colombianos

DANE – Departamento Administrativo Nacional de Estadística de Colombia

GIZ – *Deutsche Gesellschaft für Internationale Zusammenarbeit* – Corporación Alemana para la Cooperación Internacional

LNOB – *Leave No One Behind* – “No Dejar a Nadie Atrás”

PIB – Producto Interno Bruto

SBP – Sistema de Bicicletas Públicas

SBC – Sistema de Bicicletas Compartidas

SDM – Secretaria Distrital de Movilidad

USD – Dólar estadounidense
1. INTRODUCCIÓN

Este informe es uno de los entregables de la Asistencia Técnica para la Estructuración de los Sistemas de Bicicletas Compartidas en la ciudad de Bogotá como soporte al C40 “Cities Finance Facility” (CFF).

El objetivo de este informe técnico es evaluar las alternativas de estructuración técnica, legal, institucional y financiera para la implementación y operación de los sistemas de bicicletas compartidas, incluyendo recomendaciones para que contribuyan con una movilidad urbana sostenible en Bogotá.

Para esto, el estudio inició con reuniones con el equipo técnico y de liderazgo local para entender sus necesidades, conocer los objetivos e identificar premisas específicas de la implementación de este sistema.

1.1 Histórico

Las diferentes administraciones distritales han buscado la implementación de un sistema de bicicletas compartidas desde el 2015. Más adelante se presenta un histórico del proceso, conforme a lo presentado en los estudios previos definitivos de la licitación para CAMEP de alquiler de bicicletas en 2019 (SDM-LP-085-2019). Los principales aspectos en este proceso fueron:

- En 2015 se celebró el contrato de Concesión No. 1042-2015 cuyo objetivo era “Implementar y operar, por su cuenta y riesgo, el sistema de bicicletas públicas de Bogotá-SPB”, donde la SDM tenía que aportar a través de una contraprestación económica, por incumplimiento por parte del contratista se decidió declarar la caducidad del contrato de concesión.
- En 2016 se recibió una propuesta de APP de iniciativa privada denominada “Iniciativa Privada Autofinanciada para la Provisión, Instalación, Mantenimiento y Operación de un Sistema de Bicicletas Públicas de Alquiler - Bike Bogotá”, a la que se le dio trámite hasta que, en julio de 2018, fue rechazada mediante la Resolución No. 131 del 11 de julio de 2018 expedida por la Subsecretaría de Política Sectorial, dado que el originador no entregó la información requerida que permitiera viabilizar el proyecto en los tiempos establecidos por la Ley 1508 de 2012.
- En 2018 fue recibida una nueva propuesta de APP de iniciativa privada denominada “Operación, mantenimiento y explotación de un Sistema de Transporte Público de Bicicletas Públicas para la ciudad de Bogotá”, que hasta el momento cuenta solamente con estudios de prefactibilidad.
- En 2019 la SDM elaboró los estudios y documentos previos de la licitación SDM-LP-085-2019 cuyo objeto era “Contratar la administración, mantenimiento y aprovechamiento económico de zonas de uso público para el desarrollo de la actividad de alquiler de bicicletas – sistema de bicicletas compartidas, sujeto a su preservación, buen uso, disfrute colectivo y sostenibilidad”. Este proceso fue declarado desierto, teniendo en cuenta que no se presentaron ofertas.
1.2 Estructuración de los sistemas de bicicletas compartidas en 2020

Este Informe Técnico se inicia con la estructuración técnica de los sistemas de bicicletas compartidas, con la propuesta de zona de operación y dimensionamiento, y continuando con aspectos de la estructuración legal, de la estructuración financiera y una caracterización del mercado. Las propuestas de este informe, elaboradas considerando el histórico de propuestas y la evaluación conjunta con la Secretaría Distrital de Movilidad (SDM) son la base de la evaluación financiera y preparación de documentos para la implementación de los sistemas.

El primer paso fue la validación del objetivo con la implementación de este sistema, que sigue siendo el mismo: que los habitantes de la capital tengan acceso al servicio de alquiler de bicicletas, con la finalidad de que éste fomente el uso de la bicicleta y se brinde una alternativa de transporte sostenible a los ciudadanos.

Desde el punto de vista técnico, se inició con una discusión de las experiencias anteriores y alternativas para viabilizar una implementación del sistema a corto plazo y minimizar los riesgos que afectaron los intentos anteriores. Para esto, se discutió las alternativas de implementar una concesión o APP de iniciativa pública sin recursos públicos y autorización de aprovechamiento económico del espacio público (permisos y CAMEP).

Hasta junio de 2020 la intención era de implementar un programa piloto de bicicletas compartidas, que no requeriría inversión de recursos públicos para su implementación y operación y que generara datos para evaluar la viabilidad para implementar un sistema definitivo en la ciudad. Este lineamiento fue discutido entre los diferentes actores, SDM, CFF, Logit y Fundación Despacio, desde las primeras reuniones a inicios de 2020. La intención era implementar este sistema en corto plazo, con algún mecanismo que permitiera una flexibilidad a los operadores.

Entre otras premisas, se planteó también que el piloto debería generar un impacto social positivo, buscando beneficiar a más ciudadanos de Bogotá que los que viven en la zona de operación, suponiendo que el sistema sería implementado en zonas de más altos ingresos de la ciudad. Para esto, se discutieron alternativas de fórmulas de retribución y otros mecanismos, con el objetivo de evitar generar una barrera a operadores interesados y, al mismo tiempo, generar este impacto social.

Durante este período, y con ocasión de la pandemia de COVID-19, la SDM autorizó la operación temporal de bicicletas compartidas con un permiso especial mientras se extienda la emergencia sanitaria decretada por el Gobierno Nacional. En este sentido, en el Decreto Distrital 121 de 2020, en el cual se autoriza a la Secretaría Distrital de Movilidad a expedir permisos temporales de micromovilidad, y/o suspender y/o modificar los permisos vigentes de aprovechamiento económico del espacio público para el alquiler de patinetas. Además, el Decreto Distrital 128 adiciona un párrafo al art. 11 del D. 121 señalando que “Los permisos de micromovilidad que se otorguen durante la vigencia de la calamidad pública decretada en Bogotá D.C., no tendrán contraprestación en favor del Distrito Capital.

A partir de junio de 2020, considerando los resultados de la revisión de factibilidad técnica y del estudio de mercado, se estableció como nueva premisa la de tener dos figuras jurídicas en simultánea: una para autorizar algunos operadores de bicicletas compartidas a través de permisos y otra para autorizar a un operador a través de un Contrato de

En términos del proceso de estructuración y de las definiciones técnicas, es importante notar que las recomendaciones consignadas en el documento son válidas tanto para una Concesión o APP de iniciativa pública sin recursos públicos como para la implementación mediante autorización de aprovechamiento económico del espacio público (permisos y CAMEP). Asimismo, en el capítulo de estructuración legal e institucional, en el ítem de marco legal e institucional propuesto, se presenta una evaluación de las alternativas.

Además, es importante notar que durante este proceso de planeación existen bicicletas compartidas en operación en la ciudad. El operador es MUVO, con alrededor de 700 bicicletas de pedaleo asistido. Existen también servicios de alquiler de patinetas eléctricas en operación.

1.3. Premisas y características preliminares

Con el objetivo de dar más claridad a las características preliminares propuestas, a continuación, se presenta un cuadro de resumen comparando los dos sistemas. Algunas de las características son premisas discutidas con la SDM, mientras otras son propuestas técnicas que se presentan en este informe. Así mismo, este resumen permite tener una visión general que sirve como base para la discusión en los siguientes capítulos.

Tabla 1.1: Características preliminares de los Sistemas de Bicicletas Compartidas a implementar

<table>
<thead>
<tr>
<th>Características</th>
<th>Permisos</th>
<th>CAMEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objetivos</td>
<td>Tiene el objetivo de generar oportunidades para los operadores que están operando en la ciudad y permitir la entrada de nuevos operadores de bicicletas con servicios diferenciados (eléctricas, por ejemplo), sin ser el sistema principal.</td>
<td>Tiene el objetivo de ser el sistema principal, más amplio y con mayor duración, generando oportunidad para un patrocinio de más largo plazo y recuperación de una inversión de capital en estaciones.</td>
</tr>
<tr>
<td>Instrumento jurídico de autorización</td>
<td>Acto administrativo con permiso para aprovechamiento del espacio público</td>
<td>Contrato de Administración, Mantenimiento y Aprovechamiento Económico de Espacio Público – CAMEP</td>
</tr>
<tr>
<td>Número de operadores</td>
<td>Varios - no está predefinido</td>
<td>Uno (1)</td>
</tr>
<tr>
<td>Forma de selección</td>
<td>Distribución de permisos entre operadores que cumplen requisitos mínimos según conjunto de reglas a definir.</td>
<td>Licitación pública</td>
</tr>
<tr>
<td>Inicio</td>
<td>Probablemente 2020</td>
<td>Probablemente 2021</td>
</tr>
<tr>
<td>Características</td>
<td>Permisos</td>
<td>CAMEP</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Plazo de duración</td>
<td>1 año (con posibilidad de extensión)</td>
<td>5-10 años (por definir)</td>
</tr>
</tbody>
</table>

Tipo de sistema de bicicletas

Sistemas de bicicletas sin anclaje (smart-bikes de 4ª generación, con desbloqueo directamente en la bicicleta).	Sistemas de bicicletas con anclaje convencional (estaciones automáticas) o con anclaje simplificado (smart-bikes de 4ª generación, con desbloqueo directamente en la bicicleta) que sean ancladas en estaciones simplificadas.
Pueden presentarse sistemas con flotas que incluyan bicicletas eléctricas.	Pueden presentarse sistemas con flotas que incluyan bicicletas eléctricas.
La SDM busca mecanismos para establecer requisitos mínimos de calidad para las bicicletas, enfocados en la seguridad y eficiencia del uso del espacio público.	La SDM busca mecanismos para establecer requisitos mínimos de calidad para las bicicletas, enfocados en la seguridad y eficiencia del uso del espacio público.

Estaciones

| No se requieren estaciones. La SDM podrá definir si las bicicletas deben ser parqueadas en cajones sobre la calzada vial (como los de patinetas) o si podrían estar parqueadas fuera de los cajones. | Se recomienda un sistema basado en estaciones con módulos de anclaje, pudiendo estar la tecnología de desbloqueo en la bicicleta, en el tótem, o en el anclaje (sistemas de tercera o cuarta generación), para una mejor organización del espacio público y seguridad. |
| En caso de requerir estaciones se generaría dificultad de implementar y recuperar inversión en el período del permiso. | |

Número de bicicletas

<p>| Se establece un número máximo de bicicletas permitidas (límite de flota) a distribuir entre las empresas interesadas que se presenten. | Se establece un rango de número mínimo y máximo de bicicletas que el operador debe implementar. |
| Recomendación en este informe, en el ítem 2.3 - Dimensionamiento. | Como sistema principal, se considera que su cantidad de flota debe ser más amplio que el del sistema bajo permisos. |
| | Recomendación en este informe, en el ítem 2.3 - Dimensionamiento. |</p>
<table>
<thead>
<tr>
<th>Características</th>
<th>Permisos</th>
<th>CAMEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zona de operación</td>
<td>Se define a partir del interés de la Alcaldía e interés del mercado,</td>
<td>Se define a partir del interés de la Alcaldía e interés del mercado,</td>
</tr>
<tr>
<td></td>
<td>considerando aspectos de uso de suelo, demanda potencial, barreras</td>
<td>considerando aspectos de uso de suelo, demanda potencial, barreras</td>
</tr>
<tr>
<td></td>
<td>urbanas, existencia de ciclo-infraestructura, entre otros.</td>
<td>urbanas, existencia de ciclo-infraestructura, entre otros.</td>
</tr>
<tr>
<td></td>
<td>Se presenta una recomendación en este informe, en el ítem 2.2. –</td>
<td>Como sistema principal, se considera que su zona de operación debe</td>
</tr>
<tr>
<td></td>
<td>Recomendación de zona de operación.</td>
<td>ser igual o más amplia que la zona del sistema bajo permiso en esta</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fase de implementación.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Se presenta una recomendación en este informe, en el ítem 2.2. –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recomendación de zona de operación.</td>
</tr>
<tr>
<td>Tarifas</td>
<td>El operador tiene libertad de definir sus tarifas.</td>
<td>El operador tiene libertad de definir sus tarifas.</td>
</tr>
<tr>
<td>Patrocinios y/o publicidad</td>
<td>Se presenta un análisis en el ítem 3.2.3 - Análisis de factibilidad de</td>
<td>Se considera que el marco del CAMEP y el plazo debe representar una</td>
</tr>
<tr>
<td></td>
<td>implementar fuentes alternativas de ingreso</td>
<td>ventaja para que este operador obtenga patrocinadores de largo plazo.</td>
</tr>
<tr>
<td>Subsidios públicos</td>
<td>No</td>
<td>Se presenta un análisis en el ítem 3.2.3 - Análisis de factibilidad</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de implementar fuentes alternativas de ingreso</td>
</tr>
<tr>
<td>Retribución por el aprovechamiento del espacio público</td>
<td>Este informe presenta alternativas de fórmulas de retribución o forma de retribución en especie (enfocado en equidad) en el capítulo 4.2 – Alternativas para retribución por aprovechamiento del espacio público.</td>
<td>Este informe presenta alternativas de fórmulas de retribución o forma de retribución en especie (enfocado en equidad) en el capítulo 4.2 – Alternativas para retribución por aprovechamiento del espacio público.</td>
</tr>
</tbody>
</table>

En este informe se utiliza el termino **CAMEP** para referirse al sistema principal presentado en la tabla anterior. Con relación al termino **Permisos**, el informe también se refiere al conjunto de permisos como un sistema, aunque puedan ser varios operadores cada uno con su propio subsistema.
Sobre las premisas adoptadas, una de las principales corresponde a la definición de la tecnología utilizada en cada uno de los sistemas.

En los Permisos se permiten operadores (proveedores) con bicicletas sin anclaje (smart-bikes de 4ª generación, con desbloqueo directamente en la bicicleta) y no se exige estaciones. Las estaciones representan una inversión importante en infraestructura, que implican en la necesidad de períodos más largos de operación para recuperar la inversión. En otras palabras, la exigencia de estaciones sin un contrato o un compromiso de más largo plazo genera un riesgo alto para los proveedores, que puede afectar la viabilidad de este sistema o la continuidad y calidad que se esperaría en Bogotá.

En el CAMEP, como sistema principal de la ciudad, se exigen estaciones para anclar las bicicletas. Pueden ser sistemas con anclaje convencional (estaciones automáticas) o con anclaje simplificado (smart-bikes de 4ª generación, con desbloqueo directamente en la bicicleta) que sean ancladas en estaciones simplificadas. Entre los motivos para esta recomendación están:

- Tener puntos donde el usuario sabe que siempre puede encontrar una bicicleta, garantizando más previsibilidad y confiabilidad como sistema de transporte;
- Aumentar la seguridad contra robo y vandalismo, ya que las bicicletas quedan más protegidas;
- Mantener la especificación utilizada en los sistemas con más continuidad y sostenibilidad. Por ejemplo, en 2018 se observó en EEUU que el número de bicicletas dockless que llegaron a ser decenas de millares, desaparecieron de muchas de las ciudades, con excepción a Seattle¹. Además, se identificó que los viajes en bicicletas sin anclaje fueron solo 6% de los viajes en micro movilidad, bastante inferior a los 38% de bicicletas con anclaje en EEUU en 2019²;
- Permitir que los usuarios que no tengan un smartphone con datos puedan ubicar las bicicletas;
- Permitir un mejor ordenamiento y buen uso del espacio público;
- Permitir una fiscalización más fácil por parte del gobierno;
- Contribuir para una mejor distribución y balanceo de las bicicletas, aumentando la disponibilidad de bicicletas y cobertura del sistema.

El plazo del CAMEP y de Permisos es otra premisa importante. Esta premisa se discute en este Informe Técnico, utilizando como base la Caracterización del Mercado (capítulo 4) y Análisis de Factibilidad Legal e Institucional (capítulo 3), pero también en el Informe de Modelo de Negocio y Financiero que presenta una evaluación del modelo de negocios y análisis financiero.

En el caso de Bogotá, la recomendación de plazo para CAMEP es de 5 años. Este plazo permite ajustar el sistema y tecnologías utilizadas en un nuevo contrato a mediano plazo. Si necesario, por cuestiones de sostenibilidad financiera, se recomienda establecer un

contrato de 7 años, aprovechando la vida útil de las bicicletas hasta este período. En caso excepcional, si no hay cierre financiero con este período, sería admisible establecer un contrato a 10 años.

Para los Permisos, la recomendación es establecer períodos más cortos y renovar los permisos de acuerdo con el desempeño de este sistema. Aunque entendemos que les interesa a los potenciales operadores de permisos que no haya un límite de tiempo corto en los permisos, pensamos que, por no tener la seguridad jurídica, para ambas las partes, que habría en un contrato, lo ideal sería que tengan duración de 1 a 2 años. En el caso de implementación de Permisos y CAMEP simultáneamente, tener permisos con menos requisitos y con plazos similares, podría ser visto como una competencia inadecuada por potenciales interesados en el CAMEP. Asimismo, este tema se evalúa también en el Informe de Modelo de Negócios y Financeiro.
2 ESTRUCTURACIÓN TÉCNICA

2.1 Estimación de la demanda y propuesta de zonas de operación

En este capítulo se presenta el proceso de estimación de la demanda captada por el sistema de bicicletas compartidas que se implementará en la ciudad de Bogotá y la propuesta de zona para su operación.

Para este fin, además de los propios modelos de elección discreta elaborados para este estudio, fueron utilizados datos y resultados de la Encuesta de Movilidad 2019 de Bogotá en conjunto con bases georreferenciadas oficiales proporcionadas por la SDM.

En primer lugar, se presenta la calibración de los modelos de elección discreta. Después, se presentan informaciones al respecto de la metodología adoptada para la estimación de la demanda captada por el sistema, junto con las premisas adoptadas y procesamientos efectuados para que los modelos de elección modal puedan ser aplicados. Posteriormente, se presentan las estimaciones de demanda para algunos polígonos de operación dentro de la ciudad y recomendaciones para delimitación del área de operación del sistema de bicicletas compartidas.

2.1.1 Consideraciones iniciales sobre la metodología

Es importante destacar que existen diferentes maneras posibles para definir las zonas de operación potenciales para un sistema de bicicletas compartidas. En general, según la experiencia, el dimensionamiento se realiza analizando múltiples variables las zonas de la ciudad, buscando las que generan mayor potencial de demanda para la consolidación inicial del sistema. De ahí, se establece un nivel de oferta compatible con la densidad poblacional, densidad de viajes atraídas por estas zonas y se define un número de bicicletas con base en referencias comparables de otras ciudades con condiciones similares.

En encuestas de preferencia declarada y modelos de elección discreta, utilizadas en el proyecto desarrollado por “Steer Davies & Gleave” mediante el contrato de consultoría 20121868, se observó que los coeficientes del modelo descrito en el informe apuntan hacia demandas elevadas.

Se considera que el potencial de sobreestimación es muy elevado pues las personas contestan las encuestas con base en la intención de cambiar a la bicicleta, que, en el contexto real, después de la implementación de un sistema, no necesariamente se materializa. Es decir, aunque la persona eventualmente opte por utilizar la bicicleta compartida como manifiesta en las encuestas, no necesariamente elige esta opción para todos los viajes en que tiene la bicicleta disponible.

Frente a la intención de aplicar una encuesta de preferencia declarada y utilizar los modelos de elección discreta para estimar la demanda, se ha manifestado, en diversos escenarios, que existe un riesgo de sobreestimación de la demanda y la necesidad de encontrar factores para ajuste posterior de la demanda con el objetivo de ponderar los resultados.

Para reducir una potencial sobreestimación de la demanda, se observará, en el capítulo de estimación de demanda, la proposición de un factor de ajuste de frecuencia de viajes.
Este tiene el objetivo de ponderar la estimación, considerando que la demanda calculada directamente con base en la encuesta representa un “día óptimo”, y que para el dimensionamiento se utilizaría una demanda más conservadora, que corresponde a un “día medio”, como se explica más adelante.

2.1.2 Encuesta de preferencia declarada (PD)

Las encuestas de preferencia declarada se utilizan comúnmente para la obtención de informaciones para la modelación comportamental de los usuarios con respecto a los procesos de elección. En los estudios de transporte, estas encuestas se utilizan, por ejemplo, para evaluar la intención de los usuarios a migrar de un modo de transporte existente hacia una nueva alternativa.

A diferencia de las encuestas de preferencia reveladas, en las cuales los encuestados responden preguntas sobre las características del viaje que están realizando en un modo de transporte ya existente, las encuestas de preferencia declarada tienen como objetivo evaluar las elecciones de los usuarios para diferentes escenarios y características de viaje.

Por lo tanto, una encuesta de preferencia declarada consiste en presentar al encuestado un conjunto de escenarios de comparaciones entre alternativas, en donde cada escenario contiene diferentes combinaciones de atributos que describen estas alternativas, mientras se le solicita que indique cuál alternativa probablemente sería utilizada.

La principal etapa de elaboración de la encuesta corresponde al diseño del experimento, que consiste esencialmente en:

1. Definición de las alternativas;
2. Definición de los atributos que describirán el viaje en cada una de las alternativas;
3. Definición de los niveles de variación de los atributos mencionados anteriormente;
4. Definición de las combinaciones en dos niveles de los atributos a ser mostrados al encuestado.

Este proceso se describe con más detalle a continuación.

2.1.2.1 Diseño del experimento

Dado el objetivo de estimar la demanda del sistema de bicicletas compartidas en Bogotá, el experimento de preferencia declarada fue diseñado para presentarle al encuestado un par de alternativas (experimento binario): una corresponde a un modo de transporte utilizado actualmente por el encuestado; y el otro corresponde a la bicicleta compartida. Los experimentos binarios fueron elaborados para los siguientes modos de transporte ya existentes en Bogotá:

- Automóvil
- Taxi/Uber/etc.
- Motocicleta
- Bus del SITP
- Transmilenio
- A Pie
Por lo tanto, se diseñaron 6 experimentos binarios (modo actual vs. bicicleta compartida) que, a su vez, dieron como resultado la calibración de 6 modelos de elección discreta del tipo Logit (modelo estadístico empleado), utilizado para estimar el potencial de migración de demanda de estos modos mencionados anteriormente hacia el sistema de bicicletas compartidas.

Definidas las alternativas, el siguiente paso consistió en definir las variables que fueron utilizadas para la caracterización de los viajes y las alternativas. La Tabla 2.1 presenta las variables utilizadas para los modos actuales, en cuanto la Tabla 2.2 presenta las variables utilizadas para la bicicleta compartida.

Tabla 2.1: Variables utilizadas en la caracterización del viaje en los modos actuales

<table>
<thead>
<tr>
<th>Automóvil</th>
<th>Taxi/Uber/etc.</th>
<th>Motocicleta</th>
<th>Bus del SITP</th>
<th>Transmilenio</th>
<th>A Pie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de viaje</td>
<td>Tiempo de viaje</td>
<td>Tiempo de viaje</td>
<td>Tiempo a bordo</td>
<td>Tiempo a bordo</td>
<td>Tiempo caminando</td>
</tr>
<tr>
<td>Costo de viaje</td>
<td>Costo de viaje</td>
<td>Costo de viaje</td>
<td>Tiempo caminando + esperando</td>
<td>Tiempo caminando + esperando</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Tabla 2.2: Variables utilizadas en la caracterización de los viajes en bicicleta compartida

<table>
<thead>
<tr>
<th>Bicicleta Compartida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo pedaleando</td>
</tr>
<tr>
<td>Tiempo caminando</td>
</tr>
<tr>
<td>Presencia de ciclorrutas en el camino</td>
</tr>
<tr>
<td>Costo de viaje</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Definidas las variables, el siguiente paso consistió en definir los niveles, es decir, los valores que cada variable puede asumir en el experimento. Para esto, primero se definieron valores de referencia y después se desarrollaron escenarios con variaciones en estos valores. El diseño del experimento para cada modo se presenta a continuación, en este mismo capítulo.

Se hizo una búsqueda por valores de referencia para cada uno de los parámetros. Por ejemplo, los precios de combustible, tarifa de taxi y tarifa del transporte público, representan valores reales en Bogotá. Las velocidades de los buses fueron obtenidas en el informe Estadísticas de oferta y demanda del Sistema Integrado de Transporte Público - SITP octubre de 2019. Las velocidades de automóvil y taxi fueron obtenidas de Bitcarrier y de Taxi Inteligente en 2019. Para consumo de combustible, se utilizaron valores promedios de vehículos estándar. Finalmente, la tarifa utilizada como punto de
partida para las bicicletas compartidas tuvo como referencia el sistema Yellow de São Paulo.

Se utilizaron los siguientes valores de referencia para definir estos niveles:

- **Automóvil:**
 - Combustible ($2500/l);
 - Estacionamiento ($3250);
 - Consumo (8 km/l);
 - Velocidad promedio (21 km/h).

- **Taxi/Uber/etc.:**
 - Tarifa ($82/100m);
 - Banderazo ($2300);
 - Velocidad promedio (23 km/h).

- **Motocicleta:**
 - Combustible ($2500/l);
 - Estacionamiento ($2300);
 - Consumo (24 km/l);
 - Velocidad promedio (25 km/h).

- **Bus del SITP (SITP Zonal):**
 - Tarifa ($2300);
 - Velocidad promedio (17 km/h).

- **Transmilenio (SITP Troncal):**
 - Tarifa ($2500);
 - Velocidad promedio (27 km/h).

- **A Pie:**
 - Velocidad promedio (5 km/h).

- **Bicicleta Compartida:**
 - Tarifa inicial fija mínima ($350)
 - Tarifa variable mínima ($50/min);
 - Velocidad promedio (15 km/h).

Uno de los problemas comúnmente descritos en la literatura sobre experimentos de preferencia declarada se refiere a la presentación de alternativas con características muy diferentes de la realidad del encuestado, lo que puede hacer que él pierda la sensibilidad al experimento.

Buscando minimizar este problema, se definieron dos bandas de tiempo para cada modo de transporte actual, con valores diferentes para los atributos de los viajes en cada una de estas bandas, con el fin de evitar mostrar valores muy distantes de la realidad actual del encuestado. El encuestado es direccionado a una de estas bandas de acuerdo con su tiempo de viaje en el modo actual, obteniéndose esta información durante la encuesta en el cuestionario previamente aplicado al experimento de preferencia declarada (más detalles en el ítem 2.1.2.2). Los límites de tiempo utilizados para el corte entre las bandas se muestran en la tabla abajo.
Tabla 2.3: Bandas de tiempo utilizadas para direccionar los entrevistados a sus tarjetas durante el experimento de preferencia declarada

<table>
<thead>
<tr>
<th>Banda de tiempo</th>
<th>Automóvil</th>
<th>Taxi/Uber/etc.</th>
<th>Motocicleta</th>
<th>Bus del SITP</th>
<th>Transmilenio</th>
<th>A Pie</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td><=20</td>
<td><=20</td>
<td><=15</td>
<td><=25</td>
<td><=15</td>
<td><=30</td>
</tr>
<tr>
<td>B2</td>
<td>>20</td>
<td>>20</td>
<td>>15</td>
<td>>25</td>
<td>>15</td>
<td>>30</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Las bandas de tiempo fueron definidas con base en las velocidades promedio de cada modo, de manera que la banda de tiempo uno (1) tuviese viajes de hasta aproximadamente 6 km de distancia. Para cada banda de tiempo se definió un viaje de referencia sustrayendo (B1) o adicionando (B2) hasta 10 minutos en relación al tiempo de corte entre las bandas. Las características de ese viaje de referencia (tiempos y costo) fueron calculadas con base en los valores de referencia presentados anteriormente.

Una vez definidos los tiempos y costo del viaje de referencia, los niveles de los atributos presentados a los encuestados fueron calculados con base en variaciones porcentuales sobre esos valores de referencia, utilizando redondeos para llegar al número final. Las máximas variaciones (considerando el menor y el mayor nivel del atributo) adoptadas fueron de: 75% para el tiempo de viaje en modo actual; 110% para el costo de viaje en modo actual; 120% para el tiempo de viaje en la bicicleta compartida; y 390% para el costo de viaje en la bicicleta compartida.

A continuación, se muestran los niveles de los atributos utilizados en cada uno de los 6 experimentos, en cada uno de las bandas de tiempo. En general, se adoptaron 2 niveles para los atributos del modo actual y 3 niveles para los atributos de la bicicleta compartida.
Tabla 2.4: Niveles de los atributos utilizados en el experimento (Modo: Automóvil)

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Automóvil</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de viaje (min)</td>
<td></td>
<td>B1: 10; 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 30; 55</td>
</tr>
<tr>
<td>Costo de viaje (COP)</td>
<td></td>
<td>B1: 3.800; 8.600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 5.700; 13.000</td>
</tr>
</tbody>
</table>

vs.

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Bicicleta Compartida</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo pedalando (min)</td>
<td></td>
<td>B1: 10; 15; 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 35; 45; 55</td>
</tr>
<tr>
<td>Tiempo caminando (min)</td>
<td></td>
<td>2; 5; 8</td>
</tr>
<tr>
<td>Presencia de ciclorrutas en el camino (categórica)</td>
<td></td>
<td>“Sin ciclorrutas”; “Parte del viaje en ciclorrutas”; “Todo el viaje en ciclorrutas”</td>
</tr>
<tr>
<td>Costo de viaje (COP)</td>
<td></td>
<td>B1: 0; 800; 1.600; 2.400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 0; 2.000; 4.000; 6.000</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Tabla 2.5: Niveles de los atributos utilizados en el experimento (Modo: Taxi/Uber/etc.)

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Taxi/Uber/etc.</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de viaje (min)</td>
<td></td>
<td>B1: 10; 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 30; 55</td>
</tr>
<tr>
<td>Costo de viaje (COP)</td>
<td></td>
<td>B1: 5.400; 8.900</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 11.700; 19.300</td>
</tr>
</tbody>
</table>

vs.

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Bicicleta Compartida</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo pedalando (min)</td>
<td></td>
<td>B1: 15; 20; 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 35; 45; 55</td>
</tr>
<tr>
<td>Tiempo caminando (min)</td>
<td></td>
<td>2; 5; 8</td>
</tr>
<tr>
<td>Presencia de ciclorrutas en el camino (categórica)</td>
<td></td>
<td>“Sin ciclorrutas”; “Parte del viaje en ciclorrutas”; “Todo el viaje en ciclorrutas”</td>
</tr>
<tr>
<td>Costo de viaje (COP)</td>
<td></td>
<td>B1: 0; 800; 1.600; 2.400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 0; 2.300; 4.600; 6.900</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Tabla 2.6: Niveles de los atributos utilizados en el experimento (Modo: Motocicleta)

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Motocicleta</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de viaje (min)</td>
<td></td>
<td>B1: 10; 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 25; 45</td>
</tr>
<tr>
<td>Costo de viaje (COP)</td>
<td></td>
<td>B1: 2.400; 5.400</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 3.000; 6.800</td>
</tr>
</tbody>
</table>

vs.

<table>
<thead>
<tr>
<th>Atributo</th>
<th>Bicicleta Compartida</th>
<th>Niveles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo pedalando (min)</td>
<td></td>
<td>B1: 10; 15; 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 30; 40; 50</td>
</tr>
<tr>
<td>Tiempo caminando (min)</td>
<td></td>
<td>2; 5; 8</td>
</tr>
<tr>
<td>Presencia de ciclorrutas en el camino (categórica)</td>
<td></td>
<td>“Sin ciclorrutas”; “Parte del viaje en ciclorrutas”; “Todo el viaje en ciclorrutas”</td>
</tr>
<tr>
<td>Costo de viaje (COP)</td>
<td></td>
<td>B1: 0; 600; 1.200; 1.800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2: 0; 1.200; 2.400; 3.600</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT
Definidos los niveles de cada atributo, se generaron las combinaciones que fueron presentadas a los usuarios, es decir, definir las tarjetas (cards) de los experimentos. Para cada modo-banda de tiempo, se realizaron 36 combinaciones, divididas en 4 bloques. Con el uso de la técnica de bloques, es posible adoptar más combinaciones (generar una mayor variabilidad) sin hacer que la encuesta sea demasiado extenuante, ya que cada encuestado responde apenas a las combinaciones de un solo bloque. Por lo tanto, en este estudio, cada encuestado indicó sus elecciones para 9 tarjetas diferentes (36 tarjetas divididas en 4 bloques).

<table>
<thead>
<tr>
<th>Tabla 2.7: Niveles de los atributos utilizados en el experimento (Modo: Bus del SITP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus del SITP</td>
</tr>
<tr>
<td>Atributo</td>
</tr>
</tbody>
</table>
| Tiempo a bordo (min) | B1: 15; 25
B2: 40; 60 | Tiempo pedaleando (min) | B1: 10; 15; 20
B2: 35; 45; 55 |
| Tiempo caminando + esperando (min) | 5; 15 | Tiempo caminando (min) | 2; 5; 8 |
| Costo de viaje (COP) | 2.300; 2.800 | Presencia de ciclorrutas en el camino (categórica) | “Sin ciclorrutas”; “Parte del viaje en ciclorrutas”; “Todo el viaje en ciclorrutas” |
| | | Costo de viaje (COP) | B1: 0; 800; 1.600; 2.400
B2: 0; 1.400; 2.800; 4.200 |

Fuente: Elaborado por LOGIT

<table>
<thead>
<tr>
<th>Tabla 2.8: Niveles de los atributos utilizados en el experimento (Modo: Transmilenio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmilenio</td>
</tr>
<tr>
<td>Atributo</td>
</tr>
</tbody>
</table>
| Tiempo a bordo (min) | B1: 10; 20
B2: 25; 45 | Tiempo pedaleando (min) | B1: 15; 20; 25
B2: 35; 45; 55 |
| Tiempo caminando + esperando (min) | 5; 15 | Tiempo caminando (min) | 2; 5; 8 |
| Costo de viaje (COP) | 2.500; 3.000 | Presencia de ciclorrutas en el camino (categórica) | “Sin ciclorrutas”; “Parte del viaje en ciclorrutas”; “Todo el viaje en ciclorrutas” |
| | | Costo de viaje (COP) | B1: 0; 700; 1.400; 2.100
B2: 0; 1.400; 2.800; 4.200 |

Fuente: Elaborado por LOGIT

<table>
<thead>
<tr>
<th>Tabla 2.9: Niveles de los atributos utilizados en el experimento (Modo: A Pie)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Pie</td>
</tr>
<tr>
<td>Atributo</td>
</tr>
</tbody>
</table>
| Tiempo caminando (min) | B1: 15; 20; 25
B2: 30; 40; 50 | Tiempo pedaleando (min) | B1: 5; 10; 15
B2: 15; 25; 35 |
| | | Tiempo caminando (min) | 2; 5; 8 |
| | | Presencia de ciclorrutas en el camino (categórica) | “Sin ciclorrutas”; “Parte del viaje en ciclorrutas”; “Todo el viaje en ciclorrutas” |
| | | Costo de viaje (COP) | B1: 0; 600; 1.200; 1.800
B2: 0; 1.200; 2.400; 3.600 |

Fuente: Elaborado por LOGIT
Las tarjetas se definieron a través de la técnica llamada de diseño eficiente. Esta técnica prioriza la eficiencia estadística del modelo a pesar de la existencia de correlaciones entre los atributos (el otro tipo de diseño comúnmente utilizado, llamado de ortogonal, tiene como objetivo eliminar estas correlaciones). La determinación del diseño estadísticamente más eficiente constituye la obtención de las combinaciones que minimizan el D-error, que corresponde al determinante de la matriz de varianza-covarianza de diseño.

Para generar diseños eficientes, es necesario que el analista tenga algún conocimiento al respecto del valor esperado para los coeficientes de las variables adoptadas, que solo serán obtenidos de hecho después de la calibración de los modelos de elección discreta. Esto se debe al hecho de que el diseño eficiente consiste justamente en utilizar ese conocimiento previo sobre los coeficientes para obtener combinaciones que garanticen buenos niveles de cambio (trade-offs) entre los atributos, evitando, por ejemplo, combinaciones con alternativas bastante dominantes.

En este estudio, los experimentos se diseñaron utilizando el software Ngene, utilizando la técnica denominada de Bayesian Efficient Design, que consiste en generar diseños eficientes en los que se inserta un término de error asociado a los coeficientes para tener en cuenta eventuales imprecisiones con respecto a los valores reales de estos coeficientes. El algoritmo consiste en un proceso iterativo de minimización del D-error, habiendo sido el algoritmo de cada experimento realizado durante poco más de 24 horas para garantizar una buena convergencia de ese proceso iterativo. Las estimaciones de los coeficientes utilizados como punto de partida se obtuvieron del estudio realizado mediante el contrato 20121868 (Steer).

2.1.2.2 Elaboración, divulgación y aplicación de la encuesta

La encuesta de preferencia declarada utilizada para este estudio fue elaborada con tres secciones principales, identificadas en la Figura 2.1.

![Figura 2.1: Secciones de la encuesta de preferencia declarada](Fuente: Elaborado por LOGIT)

En la primera sección de la encuesta, el objetivo principal fue recopilar información al respecto de un viaje comúnmente realizado por el encuestado en Bogotá. Esta información sirvió como base para redirigir al encuestado al experimento apropiado en la segunda sección de la encuesta, que es la propia sección de preferencia declarada. La Tabla 2.10 muestra las preguntas en la sección 1 de la encuesta.
En la Sección 2 de la encuesta, se realizó el experimento de preferencia declarada. Cada encuestado respondió a 9 escenarios de un modo de transporte (a menos que el único modo de transporte señalado en la Sección 1 sea la bicicleta; en este caso, el encuestado fue direccionado directamente a la Sección 3 de la encuesta). La Figura 2.2 muestra un ejemplo de tarjetas (*cards*) exhibidas para el entrevistado durante la realización de la Sección 2 de la encuesta.

* 1. Si estas fueran sus únicas opciones, ¿cuál elegiría?

![Tarjetas de ejemplo](image)

Figura 2.2: Ejemplo de tarjetas exhibidas en la Sección 2 de la encuesta

Fuente: Elaborado por LOGIT

En caso de que el encuestado haya indicado que utiliza más de un modo de transporte en la Sección 1, era posible responder sus preferencias con relación a más de un modo de transporte también. Para este fin, al final del primer experimento se preguntó sobre su deseo si desea de realizar el experimento de preferencia declarada nuevamente, esta vez para otro modo de transporte que haya marcado el encuestado.
En la última sección de la encuesta, el objetivo principal fue recopilar información socioeconómica de los encuestados, para poder caracterizar la muestra obtenida. Adicionalmente, también hubo espacio para que los encuestados dejaran sugerencias y comentarios sobre el sistema de bicicletas compartidas. La tabla abajo muestra las preguntas presentes en la Sección 3 de la encuesta.

<table>
<thead>
<tr>
<th>Pregunta</th>
<th>Tipo</th>
</tr>
</thead>
<tbody>
<tr>
<td>¿Cuál es el estrato de su vivienda, según el recibo de agua?</td>
<td>Selección Múltiple</td>
</tr>
<tr>
<td>¿Con que género se identifica?</td>
<td>Selección Múltiple</td>
</tr>
<tr>
<td>¿Cuántos años tiene?</td>
<td>Selección Múltiple</td>
</tr>
<tr>
<td>¿Cuál es el nivel de educación más alto que ha obtenido?</td>
<td>Selección Múltiple</td>
</tr>
<tr>
<td>¿Presenta alguna de las siguientes condiciones? (limitaciones físicas)</td>
<td>Selección Múltiple</td>
</tr>
<tr>
<td>¿Cuántos(as) ... tiene en su hogar? (carro; moto; bicicleta; patineta eléctrica)</td>
<td>Selección Múltiple</td>
</tr>
<tr>
<td>¿Tiene ...? (Smartphone; plan de datos móviles; tarjeta de crédito; tarjeta de débito)</td>
<td>Selección Múltiple</td>
</tr>
<tr>
<td>¿En qué localidad se ubica su hogar?</td>
<td>Selección Múltiple</td>
</tr>
<tr>
<td>¿Alguna o varias razones dificultaron la elección de la bicicleta compartida en la Sección 2 de esta encuesta?</td>
<td>Selección Múltiple y Texto Libre</td>
</tr>
<tr>
<td>Si quiere, use el espacio de abajo para dejar comentarios sobre la encuesta o sugerencias para el sistema de bicicletas compartidas:</td>
<td>Texto Libre</td>
</tr>
<tr>
<td>Opcionalmente, si desea seguir contribuyendo a mejorar la experiencia de viaje de los habitantes de Bogotá, por favor déjenos sus datos de contacto: (nombre, teléfono, correo electrónico)</td>
<td>Texto Libre</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

La encuesta completa se puede encontrar en el archivo PDF adjunto a este documento (Anexo 1). La encuesta fue elaborada y aplicada a través de la herramienta en línea SurveyMonkey y estuvo disponible para ser respondida durante el período comprendido entre el 20 de mayo de 2020 y el 2 de junio de 2020. La Figura 2.3 muestra la página inicial de la encuesta en el sitio web.
En total, 3.128 personas completaron el formulario. La divulgación estuvo a cargo de la Secretaría Distrital de Movilidad de Bogotá (SDM), a través de los siguientes medios para convocar a los interesados a responder la encuesta:

- TW: Twitter
- IG: Instagram
- SMS: Mensaje de texto
- FB: Facebook
- ML: Mailing desde la SDM
- WA: WhatsApp
- WEB: WebSite
- RED: Mailing de redes empresariales

La cantidad de encuestados por cada medio de divulgación se puede observar en la Figura 2.4.
2.1.2.3 Caracterización de la muestra obtenida

Durante los 13 días en que la encuesta estuvo abierta al público, 3.128 personas respondieron a todas las preguntas. La Figura 2.5 muestra la distribución de los encuestados para los indicadores, que se entienden de la siguiente manera:

- **Marcó**: cuantos modos de transporte solía usar el entrevistado en su viaje elegido en la Sección 1 de la encuesta;
- **Respondió**: para cuantos modos de transporte el entrevistado respondió sus preferencias en el experimento de preferencia declarada (PD) en la Sección 2 de la encuesta.

El gráfico en esta figura indica en la leyenda, por colores, el número de modos que el usuario marcó que solía utilizar en su viaje y para cuantos modos él contestó sus preferencias. Aunque muchos usuarios marcaron que utilizaron más de un modo de transporte, la mayoría (2.455 indicados en azul oscuro) solo contestó sus preferencias con relación a uno de los modos. O sea, cuando la herramienta preguntó si el encuestado quería seguir la encuesta y contestar sobre otros modos, solo 325 aceptaron contestar sobre 2 modos (azul claro), 46 sobre 3 modos de transporte (amarillo), y unos pocos sobre más modos.
Como se puede ver en la figura anterior, la mayoría (>75%) de los entrevistados indicaron el uso de 2 modos de transporte en su viaje, aunque la mayoría respondió la PD para sólo un modo, mostrando precisamente que la mayoría no les gusta pasar mucho tiempo respondiendo encuestas online. Esta es una de las razones por las cuales hemos adoptado la estrategia de, en vez de “obligar” a responder para más de un modo de transporte en la Sección 2, permitir que el encuestado decida si desea avanzar para la Sección 3 o realizar la PD nuevamente para otro modo de transporte.

Ahora bien, sobre este asunto de tiempo para la realización de la encuesta, la Figura 2.6 muestra un histograma del tiempo total dedicado por los encuestados para finalizar la encuesta, siendo posible identificar un tiempo promedio de alrededor de 6 a 8 minutos para completar todas las preguntas.

A pesar de los posibles sesgos en la aplicación de la encuesta por internet, fue posible obtener una distribución satisfactoria de las variables socioeconómicas dentro de la muestra obtenida, especialmente las variables claves estrato y género, utilizadas en un
proceso de corrección de la muestra (más detalles en el ítem 2.1.3.1.2). Las siguientes figuras muestran la distribución de la muestra y de la población (obtenida con base en la Encuesta de Movilidad 2019 de Bogotá – EODH2019) para estrato, género, y edad. Se observa que en la encuesta de preferencia declarada presenta en menos proporción respuestas de personas de estratos 1 y 2 en comparación con la encuesta de movilidad.

Con relación al género, los gráficos a continuación muestran que la encuesta de preferencia declarada tuvo más participantes del género masculino que la EODH2019. Además, en términos de distribución por edades, se observa que hay menos participantes menores de 18 años o más de 60 en la preferencia declarada.

Figura 2.7: Distribución de personas por estrato (Encuesta PD y Encuesta de Movilidad)
Fuente: Elaborado por LOGIT y Encuesta de Movilidad 2019 de Bogotá

Figura 2.8: Distribución de personas por género (Encuesta PD y Encuesta de Movilidad)
Fuente: Elaborado por LOGIT y Encuesta de Movilidad 2019 de Bogotá
Las siguientes figuras ilustran la distribución de la muestra según la propiedad de vehículos y también de smartphone, plano de datos móviles, tarjeta de crédito y tarjeta débito. Se observa que 70% de los hogares de participantes de la encuesta de preferencia declarada tienen bicicletas disponibles, y aproximadamente 60% tiene automóvil. También, 95% de los encuestados tiene smartphones, 82% tiene plan de datos y 87% tiene tarjeta débito. La tarjeta de crédito es el ítem que menos encuestados tienen, con un total 58%.

Figura 2.10: Distribución de la muestra según propiedad de vehículos
Fuente: Elaborado por LOGIT
También se reunió información cualitativa para ayudar a identificar el usuario cómo ve el sistema de bicicletas compartidas. La Figura 2.12 muestra la cantidad de respuestas obtenidas para diferentes razones que podrían dificultar el uso de bicicletas compartidas por los encuestados.
La Figura 2.13, por su vez, exhibe la misma información de la figura anterior, pero esta vez las respuestas están separadas por el género de los encuestados y para cada razón se presenta el porcentaje correspondiente de respuestas en relación al total de respuestas de cada género. En general, no hay mucha diferencia en las razones indicadas entre los géneros. La mayor excepción es la inseguridad para pedalear en la ciudad por cuestiones relacionadas a acoso sexual, que afecta más a las mujeres (cerca del 10 % de las respuestas) que a los hombres (menos del 1% de las respuestas).
2.1.3 Calibración de los modelos de elección modal

La tarea de comprender el comportamiento individual relacionado a la elección trae consigo algunos desafíos debido a la imposibilidad de observación de todos los hechos que influyen en el comportamiento y, porque el mismo acto de observación influye en las acciones de los individuos en sus decisiones, por lo cual es necesaria la aplicación de modelos de comportamiento individual relacionados con la elección basada en datos obtenidos del muestreo de la población.

Los modelos de elección discreta basados en la maximización de la utilidad son elaborados para analizar los efectos de varios atributos en el comportamiento individual relacionado a un conjunto de opciones. El enfoque principal de los modelos de esta naturaleza es que, en el proceso de toma de decisiones, el individuo intentará maximizar la utilidad de su elección en un proceso de “intercambio” entre los costos asociados a los beneficios de la elección.

Este proceso de “intercambio” supone, dentro de la estructura analítica de las funciones de utilidad, que los individuos poseen un comportamiento de consumo racional. El
El resultado de este proceso es traducido en términos de probabilidad de elección de una alternativa a partir de un conjunto de variables descriptivas y, para ello, se aplican técnicas econométricas de regresión. En este estudio, los modelos de elección discreta fueron calibrados de acuerdo con el modelo estadístico Logit, cuya función de probabilidad es la siguiente:

$$P_i = \frac{e^{U_i}}{\sum_{i=1}^{n} e^{U_i}}$$

En que:

- P_i: probabilidad de elección de la alternativa i;
- n: número de alternativas disponibles;
- e: base de los logaritmos neperianos ($e = 2,718...$);
- U_i: utilidad de la alternativa i, expresa como una función lineal de j atributos x_j y respectivos coeficientes o pesos (β_j):

$$U_i = \sum_{j=1}^{i} \beta_j \times x_j$$

El objetivo de la calibración de los modelos de elección discreta es justamente obtener los coeficientes β_j. La necesidad de utilizar modelos estadísticos con funciones de densidad de probabilidad (como el Logit), en vez de regresiones lineales comunes, surge del hecho de que la variable dependiente (la elección) es discreta y no puede ser traducida directamente a una escala continua.

Los procesos de preparación de base de datos, especificación de los modelos y resultados calibrados son presentados a seguir:

2.1.3.1 Consolidación de la base de datos

La base de datos utilizada en el proceso de calibración de los modelos de elección discreta consiste en las observaciones de las elecciones realizadas por los encuestados durante la encuesta de preferencia declarada (PD). Por lo tanto, cada persona que participó del experimento de PD para un determinado modo generó 9 líneas de observación para la base de datos de este modo. Estos datos fueron presentados con 9 tarjetas (cards). La muestra total obtenida para cada modo de transporte se muestra en la Tabla 2.12.
Tabla 2.12: Muestra total obtenida en el experimento de PD

<table>
<thead>
<tr>
<th>Modo de Transporte</th>
<th>Muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automóvil</td>
<td>6.669</td>
</tr>
<tr>
<td>Taxi/Uber/etc.</td>
<td>4.230</td>
</tr>
<tr>
<td>Motocicleta</td>
<td>3.375</td>
</tr>
<tr>
<td>Bus del SITP</td>
<td>4.401</td>
</tr>
<tr>
<td>Transmilenio</td>
<td>5.895</td>
</tr>
<tr>
<td>A Pie</td>
<td>4.995</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Por lo tanto, para cada modo de transporte, se ha elaborado una base de datos que contiene la siguiente información:

- **Características del entrevistado:**
 - Sabe montar en bicicleta;
 - Estrato;
 - Género.

- **Características del viaje elegido en Sección 1:**
 - Propósito.

- **Variables del escenario (1 – 9) probado en el experimento:**
 - Tiempo de viaje en modo actual;
 - Tiempo de viaje en bicicleta compartida;
 - Costos de viaje;
 - Etc.

- **Elección en el escenario (1 – 9) probado en el experimento:**
 - 0 (Modo Actual) o 1 (Bicicleta Compartida).

Después de la elaboración de la base de datos, fueron identificados comportamientos dentro de la muestra que eventualmente podrían resultar en el filtrado de algunas observaciones. Adicionalmente se adoptó, sobre la muestra filtrada (válida) obtenida, un proceso de ponderación de entrevistas para corregir eventuales problemas de submuestreo o sobremuestreo de un determinado grupo poblacional. Ambos procesos son descritos en detalle a continuación.

2.1.3.1.1 Verificación de comportamientos y consistencia de los datos
Las entrevistas fueron revisadas bajo cuatro tipos de comportamientos indeseables en el experimento de preferencia declarada, que se identifican de la siguiente manera:

- **Non-Trader-0:** Entrevistados que no cambiaron de modo en ninguno de los 9 escenarios (siempre eligieron el modo actual);
- **Non-Trader-9:** Entrevistados que no cambiaron de modo en ninguno de los 9 escenarios (siempre eligieron la bicicleta compartida);
- **Lexic_Fast:** Entrevistados que siempre eligieron el modo más rápido;
- **Lexic_Cheap:** Entrevistados que siempre eligieron el modo más barato.

Los comportamientos lexicográficos (escoger siempre la alternativa más rápida o más barata) se consideran comúnmente problemáticos para los experimentos de PD pues el
usuario, para facilitar su proceso de elección, analiza solamente una parte de las variables presentadas para hacer su elección, ignorando el resto de los atributos.

De ese modo, los comportamientos relacionados con la elección de una misma alternativa en todo el experimento no significan necesariamente inconsistencias, pero el mapeo de los encuestados que se comportaron de esta manera es importante para evaluar preferencias muy fuertes por una determinada alternativa, por ejemplo, la Figura 2.7 muestra la distribución de “traders” y “non-traders” dentro de la muestra de cada modo de transporte. Como se esperaba, los modos de transporte privados son los que tienen más encuestados que no eligieron la bicicleta compartida en ninguno de los escenarios presentados.

![Figura 2.14: Cantidad de traders y non-traders en la muestra del experimento de PD](image)

Figura 2.14: Cantidad de traders y non-traders en la muestra del experimento de PD
Fuente: Elaborado por LOGIT

En cuanto a los “non-traders”, sus respuestas contribuyen poco a la calibración del modelo de elección discreta, pero esto no necesariamente invalida la elección del usuario: elegir no cambiar. Como un esfuerzo para tratar de diferenciar a los “non-traders” que hicieron una elección (nunca cambiar) de los que no hicieron una elección (simplemente ignoraron el experimento), se desarrolló el siguiente filtro:

- En la última sección de la encuesta, había una pregunta sobre lo que dificultaba la elección de la bicicleta compartida en el experimento de PD. Si el non-trader tardó menos de 6 minutos en terminar la encuesta y dejó esta pregunta en blanco, se consideró que no prestó atención al experimento.

Los encuestados que pasan por este filtro pueden, a efectos prácticos, ser considerados como demanda cautiva del modo en cuestión. La Tabla 2.13 presenta el porcentaje de demanda cautiva resultante para cada modo de transporte.
La utilización de estos valores será detallada en el ítem 2.1.3.2.

2.1.3.1.2 Tratamiento para corrección de posibles distorsiones de la muestra

Por tratarse de una encuesta realizada en línea con divulgación a través de redes sociales, correo electrónico y mensajes de texto, se esperaba que pudieran existir algunos sesgos de muestreo, relacionados principalmente con los ingresos en la muestra recolectada, dado que no todos los grupos poblacionales tendrían las mismas posibilidades de ser afectados por la encuesta. La distribución de las características socioeconómicas de la muestra, sin embargo, se mostró muy próxima de la distribución esperada para la población, lo que indica un buen alcance en la divulgación de la encuesta.

Aun así, para que la encuesta sea lo más representativa posible de la población, se adoptó el proceso de *sample weighting* sobre la muestra filtrada (válida) para cada modo. Este proceso consiste en atribuir pesos a las observaciones de la base de datos de muestreo para que determinadas características del interés del analista tengan la misma distribución que la encontrada en el universo (población) que está siendo representada por la muestra.

Las características socioeconómicas utilizadas como referencia para este proceso de corrección de muestreo fueron estrato socioeconómico³ y género. La distribución observada en la Encuesta de Movilidad 2019 de Bogotá, se puede verificar en la Figura 2.8, junto con la distribución obtenida en la muestra de la Encuesta de Preferencia Declarada 2020, antes de la aplicación de pesos sobre las encuestas.

En términos prácticos, este gráfico exhibe para cada modo de transporte (Automóvil, Taxi/Uber/etc, Motocicleta, Bus del SITP, Transmilenio y A pie) el porcentaje de usuarios que corresponde a cada combinación de estrato-género en el universo (U) representado por la EODH2019 y en la muestra (M) de la Encuesta de Preferencia Declarada.

³ En este caso, el estrato representa el estrato de la vivienda según el recibo de la cuenta de agua.
Los pesos aplicados sobre las encuestas de cada grupo de estrato-género se pueden observar en la Tabla 2.14. Los números mayores que 1 significan que el grupo fue submuestreo, mientras que los números menores que 1 significan que el grupo fue sobremuestreo. Es importante resaltar que la muestra considerada para este proceso de definición de pesos contiene solo las encuestas filtradas utilizadas en la calibración del modelo.

Tabla 2.14: Pesos aplicados sobre la muestra válida (proceso de sample weighting)

<table>
<thead>
<tr>
<th>Modo de Transporte</th>
<th>Combinación de estrato-género (M = Masculino; F = Femenino)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-M</td>
</tr>
<tr>
<td>Automóvil</td>
<td>3,98</td>
</tr>
<tr>
<td>Taxi/Uber/ etc.</td>
<td>-</td>
</tr>
<tr>
<td>Motocicleta</td>
<td>6,74</td>
</tr>
<tr>
<td>Bus del SITP</td>
<td>15,70</td>
</tr>
<tr>
<td>Transmilenio</td>
<td>2,87</td>
</tr>
</tbody>
</table>
2.1.3.2 Especificación de los modelos

La herramienta utilizada para la calibración de los modelos de elección discreta fue RStudio, a través del objeto “GLM” de la librería estándar del lenguaje R, utilizado para realizar regresiones lineales en general. Para cada modo de transporte se realizó una regresión logística, que corresponde a un caso particular del Modelo Multinomial Logit (MNL) en el que la variable dependiente es binaria.

En general, se siguieron las siguientes pautas durante el modelaje:

- Se calibró el costo como una constante genérica, mientras que los tiempos se calibran como constantes específicas por modo y tipo, para reflejar que los usuarios ponderan de manera diferente el tiempo que pasan en cada uno de los modos;
- Se insertó una interacción del costo con una variable “dummy” de altos ingresos (estrato>=4) para capturar el menor peso del costo asignado por este grupo de usuarios;
- Se insertó una interacción de la diferencia del tiempo total de viaje con una variable dummy de viaje a trabajo para capturar el efecto de un mayor valor del tiempo en los viajes realizados por este propósito;
- La variable de infraestructura (presencia de ciclorruta) fue considerada a través de una interacción con el tiempo pedaleado.

Se evaluaron diferentes combinaciones de variables y, sobre todo, filtros a la base de datos. Los modelos que resultaron en el mejor ajuste involucran la exclusión de los cuatro comportamientos no deseados enumerados en el ítem 2.1.3.1.1.

Para tener en cuenta la existencia del porcentaje de la demanda cautiva de cada modo de transporte (que se muestra en el ítem 2.1.3.1.1) se propone que, en el momento de la aplicación de los modelos de elección discreta que se presentan a continuación, la cantidad de viajes en los que se aplicarán los modelos corresponda al total de viajes elegibles para migración (más detalles en el ítem 2.1.6) menos el porcentaje de demanda cautiva del modo (Tabla 2.13). Así, si un modo tiene 20% de demanda cautiva y la cantidad de viajes elegibles para migración es igual a 100, el modelo de elección discreta se aplicará para 80 viajes, no 100.

2.1.4 Resultados

La tabla abajo presenta los coeficientes calibrados, sus significados, sus valores y p-values (pV). La prueba de hipótesis aplicada por el objeto GLM para calcular los p-values corresponde a la prueba Z, que es la prueba comúnmente utilizada en las regresiones logísticas.

Los p-values se utilizan como indicadores de la significación estadística de los coeficientes calibrados. Típicamente, valores inferiores a 0,05 indican una buena significación estadística, pero a pesar de constituir una parte importante del análisis de los resultados de una regresión matemática, los p-values deben evaluarse con cautela,
pues sus resultados dependen de algunos factores, como por ejemplo el tamaño de la muestra, la magnitud del efecto, bias (sesgo estadístico) y error aleatorio. En algunas situaciones prácticas, el juicio de valor sobre la magnitud del coeficiente de una variable puede ser más importante que solamente evaluar su p-value.

Sobre los resultados presentados, se pueden realizar los siguientes comentarios:

- Los valores están referenciados en relación con la probabilidad de elección de la bicicleta compartida. Por lo tanto, los positivos indican que un aumento de aquella variable aumenta la probabilidad de elección de la bicicleta, mientras que los signos negativos indican que un aumento de aquella variable disminuye la probabilidad de elección de la bicicleta;
- No fue posible calibrar adecuadamente el coeficiente “dt_X_wt” para los modos de transporte privados. Por esta razón, sus valores presentados para estos modos no tienen p-value (pV), ya que los coeficientes fueron adoptados con base en los valores que calibraran bien para los otros modos;
- Los coeficientes que eventualmente tienen p-value superior a los índices comúnmente aceptados no fueron descartados del modelo porque se evaluó que sus magnitudes resultaron dentro del espectro esperado.
Tabla 2.15: Coeficientes de los modelos de elección discreta

<table>
<thead>
<tr>
<th>Variable</th>
<th>Significado</th>
<th>Tipo</th>
<th>Automóvil</th>
<th>Taxi/Uber/Etc</th>
<th>A pie</th>
<th>Bus del SITP</th>
<th>Transmilenio</th>
<th>Motocicleta</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.Intercept.</td>
<td>Constante de modo</td>
<td>Constante</td>
<td>-0.4075</td>
<td>0.4490</td>
<td>0.2699</td>
<td>-0.5091</td>
<td>0.2690</td>
<td>-0.9812</td>
</tr>
<tr>
<td>auto.ta</td>
<td>taxi.tt ...</td>
<td>Tiempo de viaje (en modo actual)</td>
<td>Efecto principal</td>
<td>0.0255</td>
<td>0.0150</td>
<td>-</td>
<td>0.0315</td>
<td>0.0357</td>
</tr>
<tr>
<td>bici.tpb</td>
<td>Tiempo pedaleando (bici)</td>
<td>Efecto principal</td>
<td>-0.0386</td>
<td>-0.0632</td>
<td>-0.0274</td>
<td>-0.0369</td>
<td>-0.0422</td>
<td>-0.0200</td>
</tr>
<tr>
<td>bici.tcb</td>
<td>Tiempo caminando (bici-modo)</td>
<td>Efecto principal</td>
<td>-0.0609</td>
<td>-0.0591</td>
<td>-0.0662</td>
<td>-0.0240</td>
<td>-0.0200</td>
<td>-0.0279</td>
</tr>
<tr>
<td>delta_temp_o_c</td>
<td>Tiempo total de viaje (bici-modo)</td>
<td>Efecto de interacción</td>
<td>-0.0052</td>
<td>-0.0051</td>
<td>-0.0312</td>
<td>-0.0055</td>
<td>-0.0093</td>
<td>-0.0065</td>
</tr>
<tr>
<td>delta_custo</td>
<td>Costo (bici-modo)</td>
<td>Efecto principal</td>
<td>-0.0002</td>
<td>-0.0002</td>
<td>-0.0014</td>
<td>-0.0008</td>
<td>-0.0005</td>
<td>-0.0003</td>
</tr>
<tr>
<td>dc_X_ar</td>
<td>Costo X Alta Renda (bici-modo)</td>
<td>Efecto de interacción</td>
<td>0.00004</td>
<td>0.0003</td>
<td>0.0002</td>
<td>0.0004</td>
<td>0.0003</td>
<td>0.0001</td>
</tr>
<tr>
<td>sem_ciclo_X_bici.tpb</td>
<td>Tiempo pedaleando X Sin ciclorruta</td>
<td>Efecto de interacción</td>
<td>-0.0127</td>
<td>-0.0166</td>
<td>-0.0361</td>
<td>-0.0109</td>
<td>-0.0116</td>
<td>-0.0132</td>
</tr>
<tr>
<td>todo_ciclo_X_bici.tpb</td>
<td>Tiempo pedaleando X Todo en ciclorruta</td>
<td>Efecto de interacción</td>
<td>0.0162</td>
<td>0.0243</td>
<td>0.0203</td>
<td>0.0204</td>
<td>0.0144</td>
<td>0.0120</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT
La Tabla 2.16, a su vez, presenta los indicadores estadísticos (McFadden Pseudo R^2, AIC, Log-Likelihood, Deviation y Degrees of Freedom) resultantes de los modelos de la tabla anterior, así como los filtros utilizados sobre las bases de datos para descartar eventuales observaciones.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Filtros en banco de datos</th>
<th>pR²</th>
<th>AIC</th>
<th>lhood</th>
<th>dev</th>
<th>degfre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automóvil</td>
<td>"No sabe montar en bicicleta"; Lexic_Fast; Non-Trader-0; Non-Trader-9</td>
<td>0,11</td>
<td>2603.41</td>
<td>-1293.71</td>
<td>2567.18</td>
<td>2071</td>
</tr>
<tr>
<td>Taxi/Uber/etc.</td>
<td></td>
<td>0,11</td>
<td>1869.16</td>
<td>-926.58</td>
<td>1755.99</td>
<td>1414</td>
</tr>
<tr>
<td>Motocicleta</td>
<td></td>
<td>0,11</td>
<td>1581.59</td>
<td>-782.80</td>
<td>1358.86</td>
<td>1099</td>
</tr>
<tr>
<td>Bus del SITP</td>
<td>Lexic_Cheap; Non-Trader-0; Non-Trader-9</td>
<td>0,10</td>
<td>2179.21</td>
<td>-1080.60</td>
<td>2283.56</td>
<td>1854</td>
</tr>
<tr>
<td>Transmilenio</td>
<td></td>
<td>0,20</td>
<td>3248.97</td>
<td>-1615.48</td>
<td>3152.45</td>
<td>2853</td>
</tr>
<tr>
<td>A Pie</td>
<td></td>
<td>0,18</td>
<td>2896.57</td>
<td>-1440.28</td>
<td>2944.76</td>
<td>2692</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Los indicadores presentados arriba son especialmente importantes para el analista comparar diferentes especificaciones para un mismo modelo y, conforme se ha dicho anteriormente, los modelos que resultaron en el mejor ajuste involucran la exclusión de los cuatro comportamientos no deseados enumerados anteriormente en el ítem sobre tratamiento de posibles distorsiones de la muestra, resultando, por ejemplo, en mayores valores de pR^2, cuyos valores están de acuerdo con los valores usualmente obtenidos en regresiones de ese tipo. Por lo tanto, los indicadores presentados en la tabla anterior representan los resultados del mejor ajuste para cada modelo, y no necesariamente son objeto de un análisis de sus valores individuales.

Cabe destacar que en regresiones logísticas no hay exactamente un coeficiente de ajuste del modelo y, por lo tanto, la interpretación del pR^2 es diferente de la interpretación del R^2 de regresiones lineares comunes. En la regresión logística, el pR^2 funciona más como un indicador de la variación en los datos que se explica por los coeficientes insertados en el modelo, siendo su valor considerablemente menor que los valores usualmente obtenidos para el $R2$ en regresiones lineales comunes.

A continuación, se presentan análisis de sensibilidad realizadas para evaluar la respuesta de los modelos calibrados frente a diferentes valores en sus variables explicativas.

2.1.5 Análisis de sensibilidad

Para comprender el peso que cada variable ejerce sobre la elección de los usuarios, no basta apenas con verificar el orden de la magnitud del coeficiente correspondiente a aquella variable, ya que este valor es una función del orden de magnitud de la misma variable. Por lo tanto, es aconsejable multiplicar los coeficientes obtenidos por valores representativos de los órdenes de magnitud de sus respectivas variables para visualizar mejor el porcentaje de influencia de cada variable sobre la elección del usuario. Este ejercicio se muestra en la Figura 2.16, a continuación, en la que se utilizaron valores de referencia de 10 y 7.000 para variables relacionadas con el tiempo y el costo, respectivamente.
Figura 2.16: Cuota de influencia de cada variable en la elección del usuario (ejercicio considerando órdenes de magnitud de 10 minutos para variables relacionadas a tiempo y $7000 para variables relacionadas a costo)

En la gráfica anterior se puede notar cómo el peso del costo en los modos de transporte público es mayor que el del transporte privado. Sin embargo, el peso del costo más alto es el de los viajes a pie, ya que, a pesar de implicar un esfuerzo físico, es una manera de moverse gratis.

Otra manera de analizar la sensibilidad de la probabilidad de elección de la bicicleta compartida (variable dependiente) a variaciones en las variables explicativas consiste en el análisis de efectos marginales. En regresiones matemáticas, el efecto marginal de una variable corresponde a medición de la variación de la variable dependiente frente a variación de esa variable explicativa. La definición matemática, por lo tanto, es \(\frac{dy}{dx} \), es decir, la derivada de \(y \) (variable dependiente) en relación a \(x \) (variable independiente).

En regresiones lineales comunes, el efecto marginal de una variable es igual a su propio coeficiente, pero en regresiones logísticas no es posible cuantificar un único valor para el efecto marginal de una variable porque, como se ha descrito en el inicio de ese ítem, el peso de una variable varía conforme su propio valor y también depende de los valores de las otras variables del modelo.
Entonces, un método comúnmente adoptado para realizar el análisis de efectos marginales en regresiones logísticas consiste en obtener el efecto marginal de la variable en los diferentes valores existentes en la base de datos y calcular su valor promedio, que se denomina efecto marginal promedio – *average marginal effect (AME)*.

Utilizando la librería *margins* de *R*, fueron obtenidos los efectos marginales promedios de las variables de los modelos calibrados. Cabe observar que, los efectos marginales se refieren a variaciones infinitesimales, siendo su interpretación comúnmente aproximada a “la variación de y dada una variación de 1 unidad en x”, pero dado el orden de magnitud de algunas variables, como el costo, una variación de 1 unidad aún no es suficiente para hacer clara la visualización de los efectos marginales. Por lo tanto, para facilitar la interpretación de los efectos marginales, a continuación, se presentan los impactos aproximados de las variables explicativas4 de los modelos sobre las probabilidades de elección de la bicicleta compartida para variaciones de 10 minutos en las variables de tiempo y COP 1000 en las variables de costo. Los puntos azules corresponden al efecto marginal promedio y la línea vertical debajo de esos puntos al intervalo de confianza5.

![Figura 2.17: Análisis de efectos marginales (Modo: Automóvil). *Variación aproximada de la probabilidad de elección de la bicicleta compartida dada una variación de 10 minutos (variables de tiempo) o COP 1000 (variables de costo)*](image)

Fuente: Elaborado por LOGIT

4 No hay efecto marginal calculado para el intercepto y también para la variable "dt_X_wt" en los modelos de los modos privados, ya que esa variable fue adicionada posteriormente al proceso de calibración de esos modelos.

5 Nivel de confianza del 95%.
Figura 2.18: Análisis de efectos marginales (Modo: Taxi/Uber/etc.). *Variación aproximada de la probabilidad de elección de la bicicleta compartida dada una variación de 10 minutos (variables de tiempo) o COP 1000 (variables de costo)

Fuente: Elaborado por LOGIT

Figura 2.19: Análisis de efectos marginales (Modo: Motocicleta). *Variación aproximada de la probabilidad de elección de la bicicleta compartida dada una variación de 10 minutos (variables de tiempo) o COP 1000 (variables de costo)

Fuente: Elaborado por LOGIT
Figura 2.20: Análisis de efectos marginales (Modo: Transmilenio). *Variación aproximada de la probabilidad de elección de la bicicleta compartida dada una variación de 10 minutos (variables de tiempo) o COP 1000 (variables de costo)

Fuente: Elaborado por LOGIT

Figura 2.21: Análisis de efectos marginales (Modo: Bus del SITP). *Variación aproximada de la probabilidad de elección de la bicicleta compartida dada una variación de 10 minutos (variables de tiempo) o COP 1000 (variables de costo)

Fuente: Elaborado por LOGIT
El análisis de efectos marginales refuerza como el peso del costo es mayor en los modos de transporte público y en especial en los viajes a pie. También es interesante observar cómo, en promedio, la presencia de ciclorruta en todo el camino disminuye en alrededor de 7 puntos porcentuales el peso del tiempo pedaleando, en comparación con un camino totalmente sin ciclorruta. Así, las siguientes figuras presentan diferentes curvas de sensibilidad a la tarifa de los modelos calibrados. El eje horizontal (X) de los gráficos indica el costo de la bicicleta compartida, mientras que el eje vertical (Y) indica la probabilidad de elección de la bicicleta compartida (ya considerando los porcentajes de demanda cautiva indicadas en la Tabla 2.13).

Las características de los viajes en el modo actual están indicadas a la derecha de los gráficos. Las curvas de probabilidad de elección están identificadas en función de las características del viaje en la bicicleta compartida (ejemplo: “25p + 10c” = 25 minutos pedaleando + 10 minutos caminando para acceder/salir de las estaciones).
Figura 2.23: Sensibilidad a la tarifa del modelo de migración modal (Modo: Automóvil)
Fuente: Elaborado por LOGIT

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de viaje en Taxi</td>
<td>20 min</td>
</tr>
<tr>
<td>Costo de viaje en Taxi</td>
<td>$5000</td>
</tr>
<tr>
<td>Alta Renda</td>
<td>No</td>
</tr>
<tr>
<td>Viaje a trabajo</td>
<td>No</td>
</tr>
<tr>
<td>Ciclorruta</td>
<td>Parte del viaje</td>
</tr>
</tbody>
</table>

Figura 2.24: Sensibilidad a la tarifa del modelo de migración modal (Modo: Taxi/Uber/etc.)
Fuente: Elaborado por LOGIT

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de viaje en Taxi</td>
<td>20 min</td>
</tr>
<tr>
<td>Costo de viaje en Taxi</td>
<td>$2500</td>
</tr>
<tr>
<td>Alta Renda</td>
<td>No</td>
</tr>
<tr>
<td>Viaje a trabajo</td>
<td>No</td>
</tr>
<tr>
<td>Ciclorruta</td>
<td>Parte del viaje</td>
</tr>
</tbody>
</table>

Figura 2.25: Sensibilidad a la tarifa del modelo de migración modal (Modo: Motocicleta)
Fuente: Elaborado por LOGIT
Bus del SITP

![Graph showing probability of bike choice vs. cost for modes 25p + 10c and 45p + 10c.]

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de viaje en Bus</td>
<td>30 min</td>
</tr>
<tr>
<td>Costo de viaje en Bus</td>
<td>$2300</td>
</tr>
<tr>
<td>Tiempo de caminata/espera</td>
<td>10 min</td>
</tr>
<tr>
<td>Alta Renda</td>
<td>No</td>
</tr>
<tr>
<td>Viaje a trabajo</td>
<td>No</td>
</tr>
<tr>
<td>Ciclrruta</td>
<td>Parte del viaje</td>
</tr>
</tbody>
</table>

Figura 2.26: Sensibilidad a la tarifa del modelo de migración modal (Modo: Bus del SITP)
Fuente: Elaborado por LOGIT

Transmilenio

![Graph showing probability of bike choice vs. cost for modes 25p + 10c and 45p + 10c.]

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo de viaje en Trans</td>
<td>20 min</td>
</tr>
<tr>
<td>Costo de viaje en Trans</td>
<td>$2500</td>
</tr>
<tr>
<td>Tiempo de caminata/espera</td>
<td>10 min</td>
</tr>
<tr>
<td>Alta Renda</td>
<td>No</td>
</tr>
<tr>
<td>Viaje a trabajo</td>
<td>No</td>
</tr>
<tr>
<td>Ciclrruta</td>
<td>Parte del viaje</td>
</tr>
</tbody>
</table>

Figura 2.27: Sensibilidad a la tarifa del modelo de migración modal (Modo: TransMilenio)
Fuente: Elaborado por LOGIT
Es posible notar una mayor disposición de los usuarios de transporte público a cambiar de modo, y también cómo los usuarios que caminan, son especialmente sensibles al costo de la bicicleta compartida, lo cual puede ser probado por la fuerte inclinación de sus curvas de sensibilidad a tarifa.

En comparación con el estudio realizado por Steer en 2013 (cuyos coeficientes de los modelos de elección discreta obtenidos fueron utilizados como punto de partida para el diseño del experimento aplicado en este estudio, como se ha explicado en el ítem 2.1.2.1), en general, se observa que las probabilidades de elección de la bicicleta compartida obtenidas con los modelos calibrados en este nuevo estudio resultaron menores, más conservadoras. Más detalles sobre las metodologías aplicadas y los resultados obtenidos por Steer pueden ser obtenidos en su respectivo informe técnico.

2.1.6 Metodología para estimación de demanda

La metodología para la obtención de la demanda consiste en:

1. Obtener una base de datos que contenga los viajes que son realizados actualmente en Bogotá;
2. Aplicar filtros para eliminar viajes con características que dificulten el uso de bicicletas compartidas;
3. Sobre el universo de viajes filtrados resultante de la etapa anterior, aplicar los modelos de migración modal para estimar la demanda captada por la introducción del nuevo modo de transporte en la ciudad.

Antes de continuar explicando en detalle la metodología adoptada, vale la pena aclarar que para efectos de la encuesta: un viaje consiste en ir de un lugar de origen a un lugar de destino, como ir de casa al lugar de trabajo, a la escuela, o a un lugar de recreación, etc. Un viaje contiene una o más etapas que corresponden a los modos de transporte utilizados para completarlos. La Figura 2.29 ilustra un viaje de una única etapa y un viaje con más de una etapa.
La base de datos que contiene los viajes que se realizan actualmente en Bogotá, utilizada para este proceso de aplicación de filtros y modelos de migración modal, proviene de la Encuesta de Movilidad 2019 de Bogotá. La zonificación adoptada por la encuesta para la identificación de los pares origen-destino se puede ver en la Figura 2.30. En total, la ciudad de Bogotá fue dividida en 922 zonas de análisis de transporte (ZAT).
2.1.6.1 Filtros

El primer paso para estimar la demanda captada por el sistema de bicicletas compartidas consiste, por lo tanto, en la aplicación de filtros sobre la base de datos de los viajes. Estos filtros buscan excluir viajes que tendrían poco potencial para ser realizados por medio de una bicicleta compartida, disminuyendo la base total de viajes sobre la cual se aplicarán los modelos de migración modal, contribuyendo a una estimación más conservadora, fundamentalmente en este tipo de proyecto.

Los siguientes filtros fueron adoptados en este estudio:

1. **Región**: Descartar viajes con origen y/o destino fuera de Bogotá;
2. **Motivo de viaje**: Descartar viajes cuyo motivo podría generar dificultades para la selección de la bicicleta:
 - Compras;
 - Cuidados de salud;
 - Buscar algo o a alguien.
3. **Edad de la persona**: Descartar viajes realizados por personas con menos de 16 años o mayores de 62 años;
4. **Horario del viaje**: Descartar viajes con horario de inicio o finalización entre las 23:30 y 05:30;
5. **Persona con limitación física**: Descartar viajes realizados por personas que poseen alguna limitación física;
6. **Filtro de distancia o tiempo de viaje**: Descartar viajes con más de 6 km de distancia para los siguientes modos: Automóvil, Taxi/Uber/etc., Motocicleta, Bus del SITP y Transmilenio; Descartar viajes a pie menores de 15 minutos o mayores que 70 minutos;

En el caso de viajes con más de una etapa, el modelo de migración modal fue aplicado considerando el modo de transporte principal del viaje, identificado como el de la base de datos de la Encuesta de Movilidad. La Tabla 2.17 exhibe los modos de transporte existentes en la base de datos de la Encuesta de Movilidad para los cuales se aplicaron los modelos de elección discreta.

Tabla 2.17: Modos de transporte identificados en la encuesta de movilidad y sus respectivos modelos de elección discreta

<table>
<thead>
<tr>
<th>Modo de Transporte Principal (EODH2019)</th>
<th>Modelo de Elección Discreta Aplicado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto</td>
<td>Automóvil</td>
</tr>
<tr>
<td>Transporte público individual</td>
<td>Taxi/Uber/etc.</td>
</tr>
<tr>
<td>Moto</td>
<td>Motocicleta</td>
</tr>
<tr>
<td>SITP Provisional</td>
<td>Bus del SITP</td>
</tr>
<tr>
<td>SITP Zonal</td>
<td>Bus del SITP</td>
</tr>
<tr>
<td>Transmilenio</td>
<td>Transmilenio</td>
</tr>
<tr>
<td>A Pie</td>
<td>A Pie</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Además de estos viajes, también se consideró un potencial de migración que viene de desplazamientos actualmente realizados a pie para acceder o salir del transporte público, al inicio o al final de un viaje. En este caso, se ignoraron caminatas menores de 15 minutos o mayores de 30 minutos, y se han mantenido el resto de los filtros.
Por fin, en el momento de aplicación de los modelos de migración modal, sobre la cantidad de viajes de cada par O-D se aplicaron los siguientes factores para filtrar la porción que no cambia:

- Factor de demanda cautiva del modo de transporte (Tabla 2.13);
- Factor de porción de la población que no sabe montar en la bicicleta:
 - 11% en los estratos 1, 2 y 3;
 - 8% en los estratos 4, 5 y 6.
- Factor de porción de la población que no tiene plan de datos móviles:
 - 33% en los estratos 1, 2 y 3;
 - 3% en los estratos 4, 5 y 6.

Los factores descritos arriba fueron calculados con base en los datos de la encuesta de preferencia declarada realizada en este estudio.

2.1.6.2 Premisas y procesamientos

Filtrados los viajes, el paso siguiente consiste en identificar los valores de las variables que componen el modelo de elección discreta para cada par O-D, para hacer posible estimar la captación de viajes por la bicicleta compartida. Por lo tanto, es preciso definir las siguientes características de cada viaje:

- Tiempo de viaje en el modo actual
 - Tiempo a bordo del vehículo;
 - Tiempo total de caminata y espera.
- Tiempo de viaje en la bicicleta compartida
 - Tiempo pedaleando;
 - Tiempo de caminata para acceder y salir del sistema.
- Costo de viaje en el modo actual
- Costo de viaje en la bicicleta compartida
- Categorización de los viajes en relación a presencia de ciclorruta en el camino.

La base de datos de la Encuesta de Movilidad 2019 de Bogotá contiene el tiempo total declarado de viaje por los encuestados, además de los tiempos de caminata y espera, también declarados, dependiendo del modo de transporte utilizado. Para cada par O-D, las características listadas anteriormente fueron definidas de la siguiente manera:

- **Tiempo a bordo del modo de transporte:**

Para cada par OD, el tiempo de viaje se tomó como el promedio de los tiempos declarados por los entrevistados de cada modo. Se revisó la velocidad resultante y, si el valor se desvió considerablemente de la velocidad media esperada en el modo, el tiempo de viaje se calculó con base en esta velocidad promedio.

Para definir el tiempo pedaleando en la bicicleta compartida, el mismo procedimiento fuera utilizado, considerando los tiempos declarados de los viajes realizados en bicicleta propia (es posible identificar ese modo en la Encuesta de Movilidad). En caso de que no hubiese un tiempo pedaleando declarado para un determinado par OD, el tiempo de viaje se calculó con base en la velocidad promedio de la bicicleta.
Las distancias de viaje fueron calculadas multiplicando la distancia lineal entre los centroides de las zonas de análisis de transporte (ZAT) por un factor de 1,40649, que corresponde a un factor medio calculado previamente por la Secretaria Distrital de Movilidad de Bogotá para conversión de distancias lineales a distancias en red de viajes en Bogotá.

Las velocidades promedio de cada modo, así como los límites de variación asumidos para verificación de la velocidad resultante del procesamiento de los tiempos declarados por los encuestados pueden ser observados en la Tabla 2.18.

Tabla 2.18: Velocidad promedio y límites de variación para cada modo de transporte

<table>
<thead>
<tr>
<th>Velocidad (km/h)</th>
<th>Automóvil</th>
<th>Taxi/ Uber/ etc.</th>
<th>A Pie</th>
<th>Bus del SITP</th>
<th>Transmilenio</th>
<th>Motocicleta</th>
<th>Bicicleta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Límite inferior</td>
<td>11</td>
<td>12</td>
<td>3</td>
<td>9</td>
<td>18</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>Límite superior</td>
<td>42</td>
<td>46</td>
<td>8</td>
<td>34</td>
<td>41</td>
<td>50</td>
<td>23</td>
</tr>
<tr>
<td>Promedio</td>
<td>21</td>
<td>23</td>
<td>5</td>
<td>17</td>
<td>27</td>
<td>25</td>
<td>15</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

- **Tiempo de caminata/espera del modo de transporte (transporte público):**

Para cada par OD, el tiempo de caminata/espera se tomó como el promedio de los tiempos declarados por los entrevistados. Se evaluó la proporción de este tiempo en relación con el tiempo a bordo del vehículo, y se corrigieron los valores demasiado altos.

Si el tiempo de caminata + espera inicial fuera mayor que 30% del tiempo a bordo del modo, el valor fue corregido a 30% del tiempo a bordo, limitado a un valor máximo de 30 minutos. Ya con el tiempo de caminata final, si este fuera mayor que 30% del tiempo a bordo del modo, el valor fue corregido a 30% del tiempo a bordo, limitado a un valor máximo de 20 minutos.

Para la aplicación del modelo en las etapas de salida y acceso al transporte público, también fueron utilizados los tiempos resultantes del método descrito arriba.

- **Costo de viaje:**

En el caso del transporte público, se utilizaron sus propias tarifas. En el caso del transporte privado, se utilizó una porción de costo fijo y una porción variable que dependía de la distancia del viaje. Estas porciones fueron definidas con base en los valores de referencia también utilizados para el diseño del experimento de PD, presentados en el ítem 2.1.2.1. Los costos adoptados pueden ser observados en la Tabla 2.19.

Tabla 2.19: Costos utilizados para cada modo de transporte

<table>
<thead>
<tr>
<th>Costo</th>
<th>Automóvil</th>
<th>Taxi/ Uber/ etc.</th>
<th>Bus del SITP</th>
<th>Transmilenio</th>
<th>Motocicleta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fijo (COP)</td>
<td>3.250</td>
<td>2.300</td>
<td>2.300</td>
<td>2.500</td>
<td>2.300</td>
</tr>
<tr>
<td>Variable (COP/km)</td>
<td>315</td>
<td>820</td>
<td>-</td>
<td>-</td>
<td>95</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT
Los costos asociados al sistema de bicicletas compartidas son indicados en el ítem 2.1.8, pues constituyen una variable de operación y, por lo tanto, son presentados resultados de demanda para más de uno nivel de tarifa.

- **Tiempo de caminata para ingresar y salir del sistema de bicicletas compartidas:**

Este valor comprende una variable de operación y tiende a ser menor cuanto mayor sea la densidad de estaciones. Se adoptó un valor de 15 minutos para aplicación del modelo a los viajes y 10 minutos a las etapas de caminata de acceso/salida del transporte público.

Este tiempo de caminata considera, además del tiempo de caminata del origen del viaje hasta encontrar una estación, también el tiempo de desbloqueo de la bicicleta, el tiempo para terminar el viaje después de pedalear hasta la zona de destino, y la caminata hasta el destino final.

También se evaluó la sensibilidad de la demanda a este parámetro, adoptando valores fijos para todos los viajes, conforme puede ser verificado en el ítem 2.1.9.

- **Presencia de ciclorruta en el viaje:**

Para definir la variable de infraestructura se utilizaron dos bases de datos oficiales georreferenciadas: una que contiene toda la malla vial de Bogotá y otra que contiene las ciclorrutas de la ciudad. Estas bases pueden ser visualizadas en la Figura 2.31.
Figura 2.31: Bases georreferenciadas utilizadas para definir la variable de infraestructura
Fuente: Elaborado por LOGIT con datos abiertos de Bogotá

Se calcularon entonces las rutas de menor impedancia entre las zonas de análisis de transporte (ZAT), considerando una menor impedancia en las ciclorrutas que en las vías comunes (este menor peso se calculó sobre la base de los resultados de los modelos de elección, presentados en el ítem 2.1.4). Este procedimiento se realizó en el Software PTV Visum.

Para cada par O-D de la ciudad, se calculó la extensión de ciclorruta existente en la ruta de menor impedancia, generando el histograma presentado en la figura abajo.

Figura 2.32: Histograma de presencia de ciclorruta en las rutas de menor impedancia de los pares OD
Fuente: Elaborado por LOGIT

Cada par OD fue entonces clasificado en las siguientes categorías para aplicación del modelo:

- Hasta 35% de ciclorruta en el viaje: “Sin ciclorruta”;
- Entre 35% y 85% de ciclorruta en el viaje: “Parte del viaje en ciclorruta”;
- Más de 85% de ciclorruta en el viaje: “Todo el viaje en ciclorruta”.

Tal como se hizo para el tiempo de caminata, también se evaluó la sensibilidad de la demanda a este parámetro, adoptando valores fijos para todos viajes, conforme puede ser verificado en el ítem 2.1.9.

2.1.6.3 Factor de ajuste de frecuencia de viajes en bicicletas compartidas (día óptimo y día medio)

Los filtros, las premisas y todo el proceso metodológico adoptado hacen que el resultado de demanda estimada sea robusto, y las magnitudes obtenidas sean consistentes. Pero la densidad de bicicletas en los polígonos de operación, considerando solamente los procesos mencionados hasta ahora, resultó mayor que referencias internacionales existentes.

Por un lado, se considera que existe excelente potencial de demanda en Bogotá. Por otro lado, se considera que las personas que dicen que cambiarían el modo actual por la
bicicleta compartida lo harían, pero no todos los días y en todos los viajes, así como se observa en otros sistemas. También se considera que la demanda de bicicletas es especialmente sensible a factores externos, como el clima, y factores aleatorios que influyen en la oferta del sistema, como la disponibilidad de bicicleta en una estación cercana al usuario.

El riesgo de que las personas podrían contestar la encuesta de preferencia declarada de una manera muy optimista fue discutido en reuniones anteriores y se menciona también en el capítulo de consideraciones iniciales sobre la metodología en el inicio de este capítulo.

Este riesgo fue tenido en cuenta por considerar que la muestra con la divulgación por internet y mensajes de texto no fue aleatoria, y que los participantes que decidieron llenar la encuesta podrían tener una predisposición a cambiar hacia la bicicleta. De igual manera, por no tener un sistema de este tipo en funcionamiento, hay personas que tienen una percepción optimista sobre el uso de la bicicleta, que podrían manifestar su intención de cambiar a la bicicleta compartida y, después de la implementación de un sistema, no necesariamente realizar este cambio. Es decir, aunque la persona eventualmente opte por utilizar la bicicleta compartida como responden en la encuesta, no elige esta opción para todos los viajes teniendo la bicicleta disponible.

Así, se entiende que el resultado base del modelo de migración se refiere al potencial de un día óptimo del sistema, es decir, el clima es bueno para pedalear, el usuario no tiene que transportar nada consigo, hay bicicleta disponible en la estación más cercana, etc., en un escenario ideal.

Como un esfuerzo para convertir esta demanda potencial del día óptimo en la demanda del día medio, se analizaron datos de viaje en el sistema de bicicletas públicas de Guadalajara:

- En este sistema, aproximadamente el 90% de los usuarios tienen una membresía anual. De esta manera, se considera que estos usuarios están muy dispuestos a usar la bicicleta, y la usarían siempre que fuera posible;
- En 2019, el total de viajes realizados en el sistema analizado un usuario con membresía anual hizo en promedio aproximadamente 188 viajes con bicicletas en el sistema analizado;
- Considerando 252 días laborables en un año, y un promedio de 2 viajes/día/perso, tenemos 504 posibles viajes de realizar en bicicletas compartidas por año (como una aproximación simplificada);
- De esta manera, tenemos un factor de captura efectiva de viajes en la bicicleta compartida de aproximadamente 37%.

Entonces, la idea es que la aplicación de los modelos de elección discreta estima la demanda del sistema con base en la probabilidad de que los usuarios cambien de modo de transporte, y que este factor de captura efectiva de viajes, es necesario tener en cuenta que estos usuarios probablemente no utilizarían la bicicleta en el 100% de sus viajes con un potencial de cambio modal.

Por lo tanto, multiplicando este factor por la demanda base, se llegó al resultado de la demanda a un nivel medio. En el capítulo de estimación de demanda, presentamos los
resultados para el día óptimo (sin aplicación del factor arriba mencionado) y para el día medio (con aplicación del factor).

Es importante notar que se buscó referencias de otras ciudades sobre el número de viajes por membresía anual, por ejemplo. Desafortunadamente, no muchas ciudades tienen información detallada disponible, como es el caso de Guadalajara. Además, en muchos casos estas informaciones están en manos de los operadores privados, que no la comparten.

Además, esta información generalmente no está disponible de manera que se pueda utilizar para la finalidad requerida aquí. Por ejemplo, en la mayor parte de los casos encontrados existe información sobre el número total de membresías anuales adquiridas y el número total de viajes realizados en el sistema, pero no hay información de cuántos viajes hacen exclusivamente los usuarios que tienen una membresía anual.

Se encontró información sobre Citibike de Nueva York, donde afirma que realizan 155 viajes para cada membresía anual que compran. Todavía, no está totalmente claro que estos 155 viajes son realizados exclusivamente por usuarios que tienen estas membresías anuales, por consiguiente, se considera como una referencia consistente. Igualmente, este total de viajes por membresía en Nueva York tiene un orden de magnitud comparable con la que se utiliza en Guadalajara.

Además, se encontró información de 2018 sobre el número ventas de membresías y el total de viajes en el sistema de bicicletas compartidas en Rosario (Argentina) y Pernambuco (Brasil), pero en Rosario menos del 1% de las membresías son anuales y en Pernambuco menos del 3%, lo que hace imposible aproximar el número total de viajes como siendo el número de viajes de aquellos con membresía anual. La baja cantidad de las membresías anuales también puede indicar un público menos adepto al uso de la bicicleta, contrariamente a lo que se espera en Bogotá.

También se encontró información de 2018 sobre el número de membresías y el total de viajes (en este caso separados por membresía) en el sistema de bicicletas compartidas en Denver (Estados Unidos) y Vila Velha (Brasil). En Denver, las membresías anuales corresponden a aproximadamente el 4% de las membresías del sistema, ya en Vila Velha ese número es aproximadamente el 10%. Según los datos, en Denver, los usuarios con membresía anual hacen un promedio de 36 viajes al año, y en Vila Velha, 70 viajes al año.

Los números arriba nos parecen demasiado bajos, así como la propia cantidad de usuarios con membresías anuales de esos sistemas, lo que puede indicar una no tan gran adhesión al sistema de bicicletas. Por lo tanto, consideramos que el perfil de usuarios y los datos disponibles de Guadalajara son los más adecuados para el cálculo de este factor de ajuste que se propone utilizar.

6 Así como es el caso de los datos de Guadalajara, con la diferencia de que la participación de las membresías anuales no es tan significativa en los otros sistemas para permitir una aproximación en el cálculo considerando el número total de viajes de aquellos con membresía anual igual al número de viajes totales del sistema, como se hizo.
2.1.7 Alternativas de zonas de operación

Además de evaluar la demanda potencial para toda la ciudad, como si el polígono a implantar cubriera todo el territorio de Bogotá, se evaluó el potencial de demanda en polígonos específicos de la ciudad.

Los polígonos alternativos fueron definidos considerando diversos aspectos. El punto de partida fue un análisis de la Secretaría Distrital de Movilidad (SDM) con base en datos de movilidad urbana (EODH2019), de ciclo-infraestructura y de uso de suelo en el Documento Técnico de Soporte del Sistema de Bicicletas Compartidas (Avance No. 1, DPM-ET-003-2020, de abril de 2020).

Este Documento Técnico de Soporte (DTS) estableció una metodología para la definición de la zona de operación con base en la demanda potencial y la estructura urbana, según la figura abajo, con especial consideración para grandes atractores de viaje, uso de suelo y barreras urbanas.

![Diagrama de componentes para determinar zona de operación](https://via.placeholder.com/150)

Figura 2.33: Componentes para determinar zona de operación
Fuente: Elaboración propia de SDM

2.1.7.1 Demanda potencial

El DTS desarrollado por la SDM ya había identificado las zonas con más viajes con potencial de migración para bicicletas compartidas según un conjunto de características como longitud de viajes, modo original, entre otras. Esta identificación fue basada en la EODH2019 y los filtros de viajes potenciales utilizados también en la metodología de este informe (explicados en el ítem anterior).

La demanda potencial corresponde a los viajes compatibles con la migración hacia la bicicleta, pero sin considerar el porcentaje que efectivamente migraría a través de la aplicación de un factor o modelo según las características de estos viajes.

La figura abajo, por ejemplo, ilustra una alta concentración de viajes potenciales en Chapinero, Teusaquillo y Santa Fe, y la existencia de ciclo-infraestructura más densa en estas zonas.
Además de la evaluación de la demanda potencial, este informe estima la demanda que efectivamente migraría a la bicicleta compartida utilizando el modelo de elección discreta presentado anteriormente. Esta estimación se describe en el siguiente ítem, correspondiente a la estimación de demandas.

La estimación de demanda es realizada para toda la ciudad y para zonas alternativas que resultan interesantes por la evaluación integral del potencial de demanda, estructura urbana y otros factores. Sin embargo, es importante adelantar aquí una evaluación de la demanda si el sistema es implementado con operación en toda la ciudad, para confirmar que las alternativas estén orientadas hacia las zonas con mayor demanda.

La figura a continuación, presenta la densidad de orígenes de viajes (en viajes/km²) generado por el modelo para un escenario con el sistema implementado en toda la ciudad y con tarifa de COP 1.800 por un viaje de 15 minutos. Identificamos un potencial de demanda concentrada en áreas similares con mayor demanda potencial según el DTS de SDM.
2.1.7.2 Estructura urbana

Aunque el potencial de demanda es muy importante para la definición de la zona de operación, porque representa la zona donde un sistema de bicicletas compartidas puede tener más impacto, más ingresos tarifarios y más potencial de sostenibilidad financiera, también es importante analizar los otros aspectos de la estructura urbana, que complementan este análisis y que pueden indicar barreras al uso que no son representados adecuadamente en el modelo.

Con relación a los grandes atractores de viajes y uso de suelo, se aprovechó el análisis presentado en el DTS, a través de un Índice de Uso de Suelo (IUS), que aparece en la clasificación en la tabla y mapas a continuación. Las zonas con IUS entre 0 y 1 corresponden a zonas con perfil comercial y de servicios, las zonas con IUS entre 1 y 2 tienen un perfil más mixto y las zonas con IUS superior a 2 son más residenciales, según se explica en la siguiente tabla.
Tabla 2.20: Características del Índice de Uso del Suelo

<table>
<thead>
<tr>
<th>IUS</th>
<th>Uso Suelo</th>
<th>Características</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 a 1</td>
<td>Comercial y Servicios</td>
<td>Generan una gran cantidad de viajes especialmente flotantes por lo que son consideradas como aptas para la implementación de un SBC.</td>
</tr>
<tr>
<td>1 a 2</td>
<td>Mixto</td>
<td>Son las óptimas para implementar el SBC dado que permiten mantener diferentes tipos de viajes, tanto flotantes como pendulares, a lo largo del día y noche.</td>
</tr>
<tr>
<td>>2</td>
<td>Residencial</td>
<td>Son descartadas como áreas potenciales para el SBC, dado que la naturaleza de los viajes que generan, son principalmente pendulares y tienden a ser de mayor distancia: condiciones que poco promueven el uso de la bicicleta compartida.</td>
</tr>
</tbody>
</table>

Fuente: Documento Técnico de Soporte Del Sistema de Bicicletas Compartidas (SDM, Avance no. 1, DPM-ET-003-2020, de abril de 2020).

Estas zonas con IUS menor que 2 son prioridad para el inicio de un sistema de bicicletas compartidas porque están asociadas a una mayor atracción de viajes y demanda. Además, son zonas que suelen tener más viajes a lo largo del día, para compras o acceder a servicios, lo que es menos común en zonas con perfil más residencial, y se aprovecha mejor las bicicletas.

En el mapa a continuación, las zonas identificadas en verde están con un Índice de Uso de Suelo entre 0-1 y en amarillo aparecen las que tienen IUS entre 1-2. Se identifican con un potencial de atracción de viajes, también por el uso de suelo, significativo en Chapinero, Teusaquillo y Santa Fe.

Este IUS es utilizado también como referencia para la definición de la zona prioritaria para implementación de las bicicletas compartidas, considerando una prioridad para zonas comerciales, de servicio y mixtas, que generan un mayor potencial de consolidación para este sistema antes de expansiones futuras que pueden ser consideradas.
2.1.7.3 Ciclo-infraestructura, barreras urbanas, integración con transporte público e integración con proyectos futuros

Por otro lado, es importante considerar también las barreras urbanas, proyectos existentes en la ciudad y potencial de integración con el transporte público. Este análisis se hace con base en el mapa en la figura abajo. En color negro, está el límite del análisis del uso de suelo del mapa anterior como referencia.
Figura 2.37: Barreras urbanas y proyectos de Bogotá
Fuente: Elaboración propia con información de SDM

Con relación a la **ciclo-infraestructura**, la zona potencial, delimitada en el mapa, tiene buena conectividad. Las ciclorrutas son apuntadas en el mapa con líneas en color gris.
Este es un elemento importante para que los nuevos usuarios, atraídos por el sistema de bicicletas compartidas, tengan un elemento adicional para seguridad vial en sus viajes.

Con respecto a la integración con el transporte público y barreras urbanas, el principal elemento a considerar en esta área potencial son los troncales de Transmilenio. Este sistema es representado con líneas rojas a continuación en el mapa, y tiene sus estaciones con puntos negros.

En primer lugar, se considera la integración con Transmilenio como un aspecto importante para la definición del sistema. Por este motivo, sus ejes y estaciones son considerados elementos orientadores. La Av. Caracas cruza la zona potencial generando oportunidad de integración intermodal con las bicicletas compartidas. Además, se consideran puntos de integración con la Calle 26 y la Av. NQS. La zona de operación debe llegar hasta las troncales de Transmilenio, de manera que las estaciones de bicicletas puedan estar lo más cercanas posible de las estaciones de las troncales.

Aun así, Transmilenio también representa una barrera urbana. La Av. Caracas no es una barrera tan importante como la Av. NQS y Autopista Norte, pues tiene intersecciones a nivel que pueden ser utilizadas por las bicicletas compartidas. En cambio, la Av. NQS y Autopista Norte no tienen intersecciones a nivel y obligarían a las bicicletas a utilizar puentes para tráfico general o puentes peatonales que son menos adecuados para el tránsito de bicicletas. Por ende, estas barreras urbanas pueden ser utilizadas como límites de la zona de operación en un primer momento.

Finalmente, el potencial de integración con proyectos futuros es un elemento importante a considerar. En este sentido, la zona potencial y las alternativas pueden considerar los proyectos de la Ciclo Alameda Medio Milenio, el Regiotram del Occidente y el Metro, representados en color verde y azul en el mapa anterior.

2.1.7.4 Definición de alternativas

El objetivo del análisis del DTS de SDM y de los otros aspectos mencionados anteriormente fue delimitar la zona potencial donde debería ser implementado el sistema de bicicletas compartidas. Esta delimitación inicial que sirve como referencia para definir alternativas de zonas de operación.

Las alternativas definidas en este ítem serán evaluadas desde el punto de vista de la demanda, antes de la recomendación y dimensionamiento de la zona para implementación. Esta recomendación debe tomar en consideración también los aspectos de estructura urbana destacados anteriormente.
2.1.7.4.1 Zona de 67 km² (Extra Grande)
Este análisis inicial resultó en una preselección de un primer polígono de 67 km², que concentra un potencial alto de uso de bicicletas compartidas y condiciones adecuadas para su circulación. Este polígono cuenta con población residente de aproximadamente 805.000 habitantes, según datos de la EODH2019.

Esta es una zona muy amplia para la implementación de un sistema de bicicletas compartidas inicialmente. Cubrir esta zona implica un alto costo de implementación y riesgo para un operador, especialmente sin tener una experiencia previa comparable en la ciudad. Esta alternativa se incluye para evaluar con más detalle cuál sería la demanda potencial y dimensionamiento aproximado, y poder tener una visión futura de la expansión del sistema.

Figura 2.38: Zona de 67 km² (Extra Grande)
Fuente: Elaboración propia con información de SDM
2.1.7.4.2 Zona de 41 km² (Grande)
Esta alternativa puede ser considerada como tamaño límite para una licitación, pero podría ser factible si los interesados logran encontrar un patrocinador con recursos suficientes y dispuesto a aportar durante todo el período de operación del sistema. En comparación con la anterior, esta no incluye Teusaquillo, Barrios Unidos y Los Mártires.

Esta zona incluye algunas áreas con menor demanda potencial, pero tiene buena cobertura, buena integración con Transmilenio y considera la barrera urbana de la Avenida NQS, que establece su límite al oeste.

Este polígono cuenta con población residente de aproximadamente 475.000 habitantes, según datos de la EODH2019.

Figura 2.39: Zona de 41 km² (Grande)
Fuente: Elaboración propia con información de SDM
2.1.7.4.3 Zona de 28 km² (CAMEP 2019)

Una alternativa de menor tamaño es la zona de 28 km² propuesta en el CAMEP de 2019. Este incluye Santa Fe, Usaquén y Chapinero, y corresponde a una zona de uso de suelo predominantemente mixto. Esta área tiene un potencial de demanda alta por kilómetro cuadrado, y una concentración en zonas con estratos altos que maximizan el potencial de sostener la operación con ingresos de patrocinios y tarifas. Este polígono tiene una población de aproximadamente 305.000 habitantes, según la EODH2019.

Figura 2.40: Zona de 28 km² (CAMEP 2019)
Fuente: Elaboración propia con información de SDM
2.1.7.4.4 Zona de 26,4 km² (Mediana)
Esta alternativa fue desarrollada en conjunto con SDM para revisar algunos límites de la zona de 28 km². Como la alternativa anterior, esta incluye Santa Fe, Usaquén y Chapinero, y corresponde a una zona de uso de suelo predominantemente mixto. Esta área tiene un potencial de demanda alta por kilómetro cuadrado, y una concentración en zonas con estratos altos que maximizan el potencial de sostener la operación con ingresos de patrocinios y tarifas. Este polígono tiene una población de aproximadamente 310.000 habitantes, según la EODH2019.

Figura 2.41: Zona de 26,4 km² (Mediana)
Fuente: Elaboración propia con información de SDM

El mapa en la figura abajo presenta un comparativo entre las zonas de 28 km² (verde oscuro) del CAMEP de 2019 y la zona mínima recomendada de 26,4 km² (verde claro). Se observa que las diferencias son:
- Disminuir la zona en el norte desde la Calle 134 hacia la Calle 127 en Usaquén;
- Aumentar la zona entre la Autopista Norte y Carrera 50 entre Calle 80 y Calle 100 para cubrir una zona de interés especial donde están ubicados hospitales y una zona de uso mixto de suelo, aunque esta zona esté delimitada entre dos corredores de Transmilenio que representan barreras urbanas;
- Aumentar la zona entre la Carrera 10 y 14 y entre Calles 19 y 13, aumentando el potencial de integración con la Troncal en la Calle 13.
Figura 2.42: Comparación entre las zonas de 28 km² y la de 26,4 km²
Fuente: Elaborado por LOGIT
2.1.7.4.5 Zona de 16,9 km² (Pequeña)
El quinto polígono es un poco más pequeño y está más enfocado en las zonas de más altas demandas potenciales y estratos. Esa alternativa tiene un total de 16,9 km². Asimismo, el polígono tiene puntos de intercambio con Transmilenio para maximizar la integración y cubre también la zona central. Este polígono tiene una población de aproximadamente 210.000 habitantes, según la EODH2019.

Figura 2.43: Zona de 16,9 km² (Pequeña)
Fuente: Elaboración propia con información de SDM
2.1.7.4.6 Combinación
La siguiente figura presenta una sobreposición de las diferentes alternativas de zonas de operación evaluadas.

Figura 2.44: Polígonos de operación evaluados para demanda potencial
Fuente: Elaborado por LOGIT
2.1.8 Estimación de demanda

Con los filtros y las características de los viajes definidos para cada par origen-destino, se aplican los modelos de elección discreta presentados en el ítem 2.1.4 (Resultados) para la obtención de la demanda potencial captada por el sistema de bicicletas compartidas.

Los resultados presentados a continuación se refieren al total de viajes captados por el sistema de bicicletas compartidas, sumando las fracciones resultantes de cada modo de transporte de origen, para el cual se ha aplicado un modelo de migración.

2.1.8.1 Ciudad

Considerando los filtros presentados anteriormente, la tabla de abajo exhibe la cantidad de viajes seleccionadas\(^7\) para aplicación de los modelos de migración modal (ítem 2.1.4 - Resultados).

<table>
<thead>
<tr>
<th>Viajes con origen y destino en la zona (todos los modos)</th>
<th>14.482.967</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viajes con origen y destino en la zona (sólo los modos seleccionados para aplicación de los modelos)</td>
<td>12.545.382</td>
</tr>
<tr>
<td>- Filtro de motivo de viaje</td>
<td>-2.074.865</td>
</tr>
<tr>
<td>- Filtro de edad de la persona</td>
<td>-2.883.017</td>
</tr>
<tr>
<td>- Filtro de horario del viaje</td>
<td>-412.960</td>
</tr>
<tr>
<td>- Filtro de persona con limitación física</td>
<td>-496.112</td>
</tr>
<tr>
<td>- Filtro de distancia o tiempo del viaje</td>
<td>-4.580.434</td>
</tr>
<tr>
<td>= Viajes motorizados y peatonales con potencial de migración</td>
<td>2.097.994</td>
</tr>
<tr>
<td>+ Etapas de acceso al Transporte Público potenciales (adicionales)</td>
<td>+750.551</td>
</tr>
<tr>
<td>= Demanda potencial total</td>
<td>2.848.545</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Entonces, aplicando los modelos de elección discreta para diferentes niveles de tarifa en el sistema de bicicletas compartidas, las demandas estimadas pueden ser verificadas en la tabla de abajo.

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Día óptimo</th>
<th>Día medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gratis</td>
<td>786.327</td>
<td>290.941</td>
</tr>
<tr>
<td>1.800 por 15 minutos (COP 750 + COP 70 por minuto)</td>
<td>358.579</td>
<td>132.674</td>
</tr>
<tr>
<td>3.000 por 15 minutos (COP 750 + COP 150 por minuto)</td>
<td>206.439</td>
<td>76.382</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Los orígenes de los viajes captados por el sistema de bicicletas compartidas pueden ser visualizados en la figura abajo (considerando la demanda del día medio).

\(^7\) En esta tabla, la cantidad de viajes retenidos en cada filtro se presenta de manera incremental, por lo que la cantidad total de viajes que se encaja en cada filtro puede ser mayor.
El mapa de orígenes de los viajes captados por el sistema de bicicletas compartidas confirma que hay un gran potencial de demanda en las localidades de Chapinero, Teusaquillo, Los Mártires, entre otras, más al oriente de la ciudad, conforme se destacó en el ítem de alternativas de zonas de operación, reforzando la definición preliminar de los tres polígonos de operación (para dimensionamiento) en esta región.
2.1.8.2 Polígono de 67 km² (Extra Grande)

Considerando los filtros presentados anteriormente, la tabla abajo exhibe la cantidad de viajes seleccionadas\(^8\) para aplicación de los modelos de migración modal (ítem 2.1.4 - Resultados).

Tabla 2.23: Cantidad de viajes filtrados para aplicación de los modelos de migración modal (Sistema en el polígono de 67 km²)

<table>
<thead>
<tr>
<th>Viajes con origen y destino en la zona (todos los modos)</th>
<th>1.423.202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viajes con origen y destino en la zona (sólo los modos seleccionados para aplicación de los modelos)</td>
<td>1.272.370</td>
</tr>
<tr>
<td>- Filtro de motivo de viaje</td>
<td>-215.598</td>
</tr>
<tr>
<td>- Filtro de edad de la persona</td>
<td>-262.016</td>
</tr>
<tr>
<td>- Filtro de horario del viaje</td>
<td>-14.738</td>
</tr>
<tr>
<td>- Filtro de persona con limitación física</td>
<td>-33.004</td>
</tr>
<tr>
<td>- Filtro de distancia o tiempo del viaje</td>
<td>-363.375</td>
</tr>
<tr>
<td>= Viajes motorizados y peatonales con potencial de migración</td>
<td>383.639</td>
</tr>
<tr>
<td>+ Etapas de acceso al Transporte Público potenciales (adicionales)</td>
<td>+239.913</td>
</tr>
<tr>
<td>= Demanda potencial total</td>
<td>623.551</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Entonces, aplicando los modelos de elección discreta para diferentes niveles de tarifa en el sistema de bicicletas compartidas, las demandas estimadas pueden ser verificadas en la tabla abajo.

Tabla 2.24: Demanda captada por el sistema de bicicletas compartidas en diferentes niveles de tarifa (Sistema en el polígono de 67 km²)

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Día óptimo</th>
<th>Día medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gratis</td>
<td>178.202</td>
<td>65.935</td>
</tr>
<tr>
<td>1.800 por 15 minutos (COP 750 + COP 70 por minuto)</td>
<td>88.559</td>
<td>32.767</td>
</tr>
<tr>
<td>3.000 por 15 minutos (COP 750 + COP 150 por minuto)</td>
<td>55.697</td>
<td>20.608</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Los orígenes de los viajes captados por el sistema de bicicletas compartidas pueden ser visualizados en la figura abajo (considerando la demanda del día medio).

\(^8\) En esta tabla, la cantidad de viajes retenidos en cada filtro se presenta de manera incremental, por lo que la cantidad total de viajes que se encaja en cada filtro puede ser mayor.
Figura 2.46: Origen de los viajes captados por el sistema de bicicletas compartidas, considerando la demanda del día medio (Tarifa por 15 minutos = COP 1800; Sistema en el polígono de 67 km²)

Fuente: Elaborado por LOGIT
2.1.8.3 Polígono de 41 km² (Grande)

Considerando los filtros presentados anteriormente, la tabla abajo exhibe la cantidad de viajes seleccionadas\(^9\) para aplicación de los modelos de migración modal (ítem 2.1.4 - Resultados).

Tabla 2.25: Cantidad de viajes filtrados para aplicación de los modelos de migración modal (Sistema en el polígono de 41 km\(^2\))

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Viajes con origen y destino en la zona (todos los modos)</td>
<td>827.884</td>
</tr>
<tr>
<td>Viajes con origen y destino en la zona (sólo los modos seleccionados para aplicación de los modelos)</td>
<td>744.813</td>
</tr>
<tr>
<td>- Filtro de motivo de viaje</td>
<td>-121.795</td>
</tr>
<tr>
<td>- Filtro de edad de la persona</td>
<td>-155.137</td>
</tr>
<tr>
<td>- Filtro de horario del viaje</td>
<td>-7.350</td>
</tr>
<tr>
<td>- Filtro de persona con limitación física</td>
<td>-16.641</td>
</tr>
<tr>
<td>- Filtro de distancia o tiempo del viaje</td>
<td>-200.374</td>
</tr>
<tr>
<td>= Viajes motorizados y peatonales con potencial de migración</td>
<td>243.516</td>
</tr>
<tr>
<td>+ Etapas de acceso al Transporte Público potenciales (adicionales)</td>
<td>+189.348</td>
</tr>
<tr>
<td>= Demanda potencial total</td>
<td>432.863</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Entonces, aplicando los modelos de elección discreta para diferentes niveles de tarifa en el sistema de bicicletas compartidas, las demandas estimadas pueden ser verificadas en la tabla abajo.

Tabla 2.26: Demanda captada por el sistema de bicicletas compartidas en diferentes niveles de tarifa (Sistema en el polígono de 41 km\(^2\))

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Día óptimo</th>
<th>Día medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gratis</td>
<td>124.021</td>
<td>45.888</td>
</tr>
<tr>
<td>1.800 por 15 minutos (COP 750 + COP 70 por minuto)</td>
<td>60.494</td>
<td>22.383</td>
</tr>
<tr>
<td>3.000 por 15 minutos (COP 750 + COP 150 por minuto)</td>
<td>38.110</td>
<td>14.101</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Los orígenes de los viajes captados por el sistema de bicicletas compartidas pueden ser visualizados en la figura abajo (considerando la demanda del día medio).

\(^9\) En esta tabla, la cantidad de viajes retenidos en cada filtro se presenta de manera incremental, por lo que la cantidad total de viajes que se encaja en cada filtro puede ser mayor.
Figura 2.47: Origen de los viajes captados por el sistema de bicicletas compartidas, considerando la demanda del día medio (Tarifa por 15 minutos = COP 1800; Sistema en el polígono de 41 km²)

Fuente: Elaborado por LOGIT
2.1.8.4 Polígono de 28 km² (CAMEP 2019)

Considerando los filtros presentados anteriormente, la tabla abajo exhibe la cantidad de viajes seleccionadas\(^{10}\) para aplicación de los modelos de migración modal (item 2.1.4 - Resultados).

Tabla 2.27: Cantidad de viajes filtrados para aplicación de los modelos de migración modal (Sistema en el polígono de 28 km\(^2\))

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>Cantidad de viajes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viajes con origen y destino en la zona (todos los modos)</td>
<td>556.496</td>
</tr>
<tr>
<td>Viajes con origen y destino en la zona (sólo los modos seleccionados para aplicación de los modelos)</td>
<td>507.599</td>
</tr>
<tr>
<td>- Filtro de motivo de viaje</td>
<td>-81.538</td>
</tr>
<tr>
<td>- Filtro de edad de la persona</td>
<td>-107.973</td>
</tr>
<tr>
<td>- Filtro de horario del viaje</td>
<td>-4.737</td>
</tr>
<tr>
<td>- Filtro de persona con limitación física</td>
<td>-8.728</td>
</tr>
<tr>
<td>- Filtro de distancia o tiempo del viaje</td>
<td>-135.218</td>
</tr>
<tr>
<td>= Viajes motorizados y peatonales potenciales</td>
<td>169.404</td>
</tr>
<tr>
<td>+ Etapas de acceso al Transporte Público potenciales (adicionales)</td>
<td>+162.327</td>
</tr>
<tr>
<td>= Demanda potencial total</td>
<td>331.731</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Entonces, aplicando los modelos de elección discreta para diferentes niveles de tarifa en el sistema de bicicletas compartidas, las demandas estimadas pueden ser verificadas en la tabla abajo.

Tabla 2.28: Demanda captada por el sistema de bicicletas compartidas en diferentes niveles de tarifa (Sistema en el polígono de 28 km\(^2\))

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Día óptimo</th>
<th>Día medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gratis</td>
<td>95.692</td>
<td>35.460</td>
</tr>
<tr>
<td>1800 por 15 minutos (COP 750 + COP 70 por minuto)</td>
<td>45.745</td>
<td>16.926</td>
</tr>
<tr>
<td>3000 por 15 minutos (COP 750 + COP 150 por minuto)</td>
<td>28.586</td>
<td>10.577</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Los orígenes de los viajes captados por el sistema de bicicletas compartidas pueden ser visualizados en la siguiente figura (considerando la demanda del día medio).

\(^{10}\) En esta tabla, la cantidad de viajes retenidos en cada filtro se presenta de manera incremental, por lo que la cantidad total de viajes que se encaja en cada filtro puede ser mayor.
Figura 2.48: Origen de los viajes captados por el sistema de bicicletas compartidas, considerando la demanda del día medio (Tarifa por 15 minutos = COP 1800; Sistema en el polígono de 28 km²)

Fuente: Elaborado por LOGIT
2.1.8.5 Polígono de 26,4 km² (Mediana)

Considerando los filtros presentados anteriormente, la siguiente tabla exhibe la cantidad de viajes seleccionadas\(^{11}\) para aplicación de los modelos de migración modal (ítem 2.1.4 - Resultados).

Tabla 2.29: Cantidad de viajes filtrados para la aplicación de los modelos de migración modal (Sistema en el polígono de 26,4 km²)

<table>
<thead>
<tr>
<th>Filtro</th>
<th>Cantidad de viajes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Filtro de motivo de viaje</td>
<td>-82.161</td>
</tr>
<tr>
<td>- Filtro de edad de la persona</td>
<td>-106.526</td>
</tr>
<tr>
<td>- Filtro de horario del viaje</td>
<td>-4.947</td>
</tr>
<tr>
<td>- Filtro de persona con limitación física</td>
<td>-11.045</td>
</tr>
<tr>
<td>- Filtro de distancia o tiempo del viaje</td>
<td>-140.147</td>
</tr>
<tr>
<td>= Viajes motorizados y peatonales con potencial de migración</td>
<td>179.956</td>
</tr>
<tr>
<td>+ Etapas de acceso al Transporte Público potenciales (adicionales)</td>
<td>+166.227</td>
</tr>
<tr>
<td>= Demanda potencial total</td>
<td>346.183</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Entonces, aplicando los modelos de elección discreta para diferentes niveles de tarifa en el sistema de bicicletas compartidas, las demandas estimadas pueden ser verificadas en la siguiente tabla.

Tabla 2.30: Demanda captada por el sistema de bicicletas compartidas en diferentes niveles de tarifa (Sistema en el polígono de 26,4 km²)

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Día óptimo</th>
<th>Día medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gratis</td>
<td>99.872</td>
<td>36.953</td>
</tr>
<tr>
<td>1.800 por 15 minutos (COP 750 + COP 70 por minuto)</td>
<td>47.725</td>
<td>17.658</td>
</tr>
<tr>
<td>2.250 por 15 minutos (COP 750 + COP 100 por minuto)</td>
<td>40.052</td>
<td>14.819</td>
</tr>
<tr>
<td>3.000 por 15 minutos (COP 750 + COP 150 por minuto)</td>
<td>29.870</td>
<td>11.052</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Los orígenes de los viajes captados por el sistema de bicicletas compartidas pueden ser visualizados en la siguiente figura (considerando la demanda del día medio).

\(^{11}\) En esta tabla, la cantidad de viajes retenidos en cada filtro se presenta de manera incremental, por lo que la cantidad total de viajes que se encaja en cada filtro puede ser mayor.
Figura 2.49: Origen de los viajes captados por el sistema de bicicletas compartidas, considerando la demanda del día medio (Tarifa por 15 minutos = COP 1800; Sistema en el polígono de 26,4 km²)

Fuente: Elaborado por LOGIT
2.1.8.6 Polígono de 16,9 km² (Pequeña)

Considerando los filtros presentados anteriormente, la siguiente tabla exhibe la cantidad de viajes seleccionadas\(^\text{12}\) para aplicación de los modelos de migración modal (ítem 2.1.4 - Resultados).

Tabla 2.31: Cantidad de viajes filtrados para aplicación de los modelos de migración modal (Sistema en el polígono de 16,9 km\(^2\))

<table>
<thead>
<tr>
<th>Viajes con origen y destino en la zona (todos los modos)</th>
<th>378.643</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viajes con origen y destino en la zona (sólo los modos seleccionados para aplicación de los modelos)</td>
<td>347.724</td>
</tr>
<tr>
<td>- Filtro de motivo de viaje</td>
<td>-51.878</td>
</tr>
<tr>
<td>- Filtro de edad de la persona</td>
<td>-65.016</td>
</tr>
<tr>
<td>- Filtro de horario del viaje</td>
<td>-3.075</td>
</tr>
<tr>
<td>- Filtro de persona con limitación física</td>
<td>-8.296</td>
</tr>
<tr>
<td>- Filtro de distancia o tiempo del viaje</td>
<td>-91.838</td>
</tr>
<tr>
<td>= Viajes motorizados y peatonales con potencial de migración</td>
<td>127.622</td>
</tr>
<tr>
<td>+ Etapas de acceso al Transporte Público potenciales (adicionales)</td>
<td>+125.239</td>
</tr>
<tr>
<td>= Demanda potencial total</td>
<td>252.861</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Entonces, aplicando los modelos de elección discreta para diferentes niveles de tarifa en el sistema de bicicletas compartidas, las demandas estimadas pueden ser verificadas en la siguiente tabla.

Tabla 2.32: Demanda captada por el sistema de bicicletas compartidas en diferentes niveles de tarifa (Sistema en el polígono de 16,9 km\(^2\))

<table>
<thead>
<tr>
<th>Tarifa</th>
<th>Día óptimo</th>
<th>Día medio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gratis</td>
<td>72.862</td>
<td>26.959</td>
</tr>
<tr>
<td>1.800 por 15 minutos (COP 750 + COP 70 por minuto)</td>
<td>34.483</td>
<td>12.759</td>
</tr>
<tr>
<td>3.000 por 15 minutos (COP 750 + COP 150 por minuto)</td>
<td>21.490</td>
<td>7.951</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

Los orígenes de los viajes captados por el sistema de bicicletas compartidas pueden ser visualizados en la siguiente figura, a continuación (considerando la demanda del día medio).

\(^{12}\) En esta tabla, la cantidad de viajes retenidos en cada filtro se presenta de manera incremental, por lo que la cantidad total de viajes que se encaja en cada filtro puede ser mayor.
Figura 2.50: Origen de los viajes captados por el sistema de bicicletas compartidas, considerando la demanda del día medio (Tarifa por 15 minutos = COP 1800; Sistema en el polígono de 16,9 km²)

Fuente: Elaborado por LOGIT
2.1.9 Análisis de sensibilidad

Como ejercicio para evaluar los resultados de demanda obtenidos en función de algunas variables claves, a continuación, se presenta la sensibilidad de la demanda y de los ingresos a: tarifa; tiempo de caminata para acceder/salir de las estaciones del sistema de bicicletas compartidas; presencia de ciclorruta en los caminos de los viajes.

Considerando el polígono de 26,4 km², la figura a continuación exhibe las curvas de demanda e ingresos para diferentes niveles de tarifa variable (la tarifa total está compuesta de un monto fijo de COP 750 + un monto variable por minuto). La curva más oscura corresponde a los ingresos tarifarios (eje Y izquierdo) y la curva más clara corresponde a la demanda (eje Y derecho).

La elasticidad demanda-tarifa variable resultó en aproximadamente -0,60. Así como los efectos marginales, rigurosamente, la elasticidad se refiere a variaciones infinitesimales, siendo su interpretación comúnmente aproximada a “la variación porcentual de y dada una variación de 1% en x”. Por lo tanto, de manera aproximada, significa que una variación de 1% en la tarifa (aumento) está asociada con una variación de -0,60% (reducción) en la demanda.

En este gráfico se observa que la demanda máxima ocurre con un valor fijo de COP 750 y una tarifa variable de COP 0, para la cual la demanda estimada fue de aproximadamente 25 mil viajes diarios. Para un nivel de tarifa variable de aproximadamente COP 70 por minuto, tenemos un valor máximo de ingresos tarifarios esperados (COP 25 millones, aproximadamente). A partir de este punto, mismo con aumento de la tarifa variable, se espera una reducción de los ingresos tarifarios porque la demanda también sigue bajando.

![Gráfico de sensibilidad de demanda e ingresos](image.png)

Figura 2.51: Sensibilidad de la demanda y los ingresos tarifarios del sistema (tarifa total = tarifa fija de $ 750 + tarifa variable por minuto) para la zona de operación de 26,4 km²

Fuente: Elaborado por LOGIT
En relación a el tiempo de caminata para acceder/salir de las estaciones del sistema de bicicletas compartidas, la sensibilidad fue evaluada con diferentes niveles de tiempo adoptados a todos los viajes del sistema.

Para el polígono de 26,4 km² y tarifa por 15 minutos igual a COP 2.250, las curvas de demanda e ingresos pueden ser visualizadas en la figura abajo. Los ejes Y son los mismos de los gráficos anteriores. La elasticidad demanda-tiempo de caminata resultó aproximadamente -0.30.

![Diagrama de demanda e ingresos](image)

Figura 2.52: Sensibilidad de la demanda y los ingresos al tiempo de caminata para acceder/salir de las estaciones del sistema (tarifa por 15 minutos = COP 2.250)

Fuente: Elaborado por LOGIT

Finanlemente, en relación a la variable de infraestructura (presencia de ciclorruta en el camino), la sensibilidad fue evaluada se adoptando los mismos niveles a todos los viajes del sistema (que corresponde a tener: todos los viajes siendo realizados totalmente sin ciclorruta; todos los viajes siendo realizados parcialmente en ciclorruta; y todos los viajes siendo realizados totalmente en ciclorruta).

Para el polígono de 26,4 km² y tarifa por 15 minutos igual a COP 2.250, las curvas de demanda e ingresos pueden ser visualizadas en la figura abajo. Los ejes Y son los mismos de los gráficos anteriores. La demanda resultó cerca de 20% mayor en el caso en que todos viajes son realizados totalmente en ciclorruta en relación al caso en que todos viajes son realizados totalmente sin ciclorruta.
2.2 Recomendación de zona de operación

Este capítulo tiene como objetivo presentar recomendaciones para selección de la zona de operación para validar con la Secretaría Distrital de Movilidad. Es importante que, además de una evaluación técnica, se consideren lineamientos y necesidades específicas de la política de movilidad urbana que gestiona la SDM.

Algunos de los principales aspectos que se consideran en la definición de la zona de operación son:

- **Demanda estimada**: considerar que el mayor uso del sistema representa más potencial de ingresos tarifarios, de visibilidad del sistema y de patrocinios;
- **Estructura urbana**: considerar que el uso de suelo adecuado para un primer sistema de bicicletas compartidas más amplio, con zonas, comercio, servicios y zonas mixtas con uso residencial;
- **Ciclo-infraestructura**: considerar que la implementación donde existe ciclorrutas para proteger los usuarios del sistema es favorable para el uso y seguridad de las personas;
- **Barreras urbanas**: evitar una zona que tenga barreras urbanas que dificulten desplazamientos;
- **Integración con transporte público**: elegir una zona que tenga potencial de integración con las bicicletas para viajes de última milla;
- **Integración con proyectos futuros**: elegir una zona con potencial de integración futura con proyectos de la ciudad;
- **Contribución para la movilidad urbana**: garantizar que el sistema tenga impacto positivo en la movilidad urbana como un todo, contribuyendo para las políticas y metas establecidas; por ejemplo, la definición del polígono debe contribuir para la

![Diagrama de ingresos y demanda](image)

Figura 2.53: Sensibilidad de la demanda y los ingresos a presencia de ciclorruta en los viajes (tarifa por 15 minutos = COP 1.800)

Fuente: Elaborado por LOGIT
migración de usuarios de otros modos menos prioritarios a la bicicleta, para alimentación del transporte público, para una mejor imagen de las bicicletas, entre otros aspectos de análisis más cualitativo);

- **Potencial de generación de ingresos por patrocinios**: ya que no se estimó una participación del gobierno en la financiación del servicio, los operadores estarán interesados solamente en las zonas que sean rentables para sus negocios; por lo tanto, para aumentar el potencial de éxito del sistema la zona de operación debe ser la que aumenta las oportunidades de obtener ingresos sustanciales de patrocinios;
- **Seguridad y vandalismo**: elegir una zona que minimice el potencial de robo y vandalismo de las bicicletas, evitando zonas con problemas de seguridad o teniendo medidas que minimicen estos problemas; en el marco legal propuesto para la operación no hay mecanismos que obliguen la operación en zonas con mayores riesgos de todos modos;

Estos aspectos son una ampliación de los criterios de demanda y estructura urbana utilizada en ítem anterior para definición de las alternativas de zonas potenciales. En esta etapa, ya teniendo una estimación de la demanda, este conjunto de aspectos contribuye para una decisión sobre la zona de operación a implementar.

Es importante destacar que la pandemia reciente puede haber cambiado algunos hábitos de movilidad y el comportamiento de la demanda. En este sentido, es posible haya aumentado el interés en el uso de la bicicleta como alternativa a estar dentro de vehículos con otras personas en este período y que este interés podría sostenerse en el período después de la pandemia.

Es importante destacar que, a pesar de la importancia de todos los aspectos a considerar en la definición de la zona de operación destacados arriba, existe también aspectos del negocio que son fundamentales para garantizar su implementación y sostenibilidad. En el modelo de negocio elegido, con permisos y contratos para aprovechamiento del espacio público (CAMEP), el operador privado asume los riesgos de demanda y debe encontrar las fuentes de financiación para el sistema por su cuenta y riesgo.

Para la definición de la zona de operación, es importante tener requisitos que minimicen riesgos de demanda y de obtención de ingresos para los operadores interesados en el negocio y, al mismo tiempo, tener requisitos para que las bicicletas compartidas tengan una contribución importante para las políticas de movilidad urbana en Bogotá.

En este sentido, se recomienda que la SDM defina un polígono con dimensiones mínimas que atienda los objetivos del gobierno con el sistema de bicicletas compartidas, y que se definan criterios para permitir propuestas para zonas más amplias. Abajo se presentan recomendaciones específicas para los sistemas bajo permisos y bajo CAMEP que se proponen.

2.2.1 Dimensiones mínimas recomendadas para el CAMEP

Se adopta la premisa de que se debería definir una zona de operación mínima para el CAMEP, y que si algún operador encuentra recursos para implementar una zona más amplia, que sea posible y que proponga una operación más amplia. Se considera que
los criterios de selección del operador en el caso de una licitación deben incluir el tamaño de la zona de operación y número de bicicletas, o indicadores asociados a estas dimensiones.

Como referencia para la definición de este tamaño mínimo, se recolectaron informaciones sobre sistemas de bicicletas compartidas en América Latina. Se puede observar en la figura y tabla a continuación que hay sistemas en el rango de hasta 30 kilómetros cuadrados, que incluyen ciudades medianas a grandes. Ciudad de México y Guadalajara, que tienen sistemas en operación desde 2010 y 2014, cubren un área de aproximadamente 50 km² con sus sistemas de bicicletas compartidas. Los sistemas más amplios que estos están en ciudades grandes y fueron implementados con el patrocinio de Itaú, con excepción a Fortaleza que tiene patrocinio de Unimed.

![Diagrama de área de operación](image)

Figura 2.54: Tamaño de áreas de operación de sistemas de bicicletas compartidas en América Latina

Fuente: Elaboración propia

<table>
<thead>
<tr>
<th>País</th>
<th>Ciudad</th>
<th>Nombre</th>
<th>Operador</th>
<th>Estaciones</th>
<th>Bicicletas</th>
<th>Zona de operación (km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil</td>
<td>Vila Velha</td>
<td>Bike VV</td>
<td>Tembici</td>
<td>20</td>
<td>200</td>
<td>11</td>
</tr>
<tr>
<td>Brasil</td>
<td>Porto Alegre</td>
<td>Bike POA</td>
<td>Tembici</td>
<td>41</td>
<td>410</td>
<td>11</td>
</tr>
<tr>
<td>Brasil</td>
<td>Sorocaba</td>
<td>IntegraBike</td>
<td>Tembici</td>
<td>25</td>
<td>200</td>
<td>13</td>
</tr>
<tr>
<td>México</td>
<td>Puebla</td>
<td>UrbanBici</td>
<td>Cyclo Share</td>
<td>72</td>
<td>1.100</td>
<td>21</td>
</tr>
<tr>
<td>Brasil</td>
<td>Santos</td>
<td>Bike Santos</td>
<td>Samba</td>
<td>37</td>
<td>370</td>
<td>22</td>
</tr>
<tr>
<td>Brasil</td>
<td>Salvador</td>
<td>Bike Salvador</td>
<td>Tembici</td>
<td>50</td>
<td>400</td>
<td>25</td>
</tr>
<tr>
<td>Brasil</td>
<td>Recife</td>
<td>Bike Recife</td>
<td>Tembici</td>
<td>80</td>
<td>800</td>
<td>28</td>
</tr>
<tr>
<td>México</td>
<td>Guadalajara</td>
<td>Mibici</td>
<td>BKT Bici Pública</td>
<td>274</td>
<td>2.925</td>
<td>49</td>
</tr>
<tr>
<td>México</td>
<td>CDMX</td>
<td>Ecobici</td>
<td>Clear Channel</td>
<td>480</td>
<td>6.800</td>
<td>52</td>
</tr>
<tr>
<td>Brasil</td>
<td>Fortaleza</td>
<td>Bicicletar</td>
<td>Sertel</td>
<td>130</td>
<td>1.300</td>
<td>59</td>
</tr>
<tr>
<td>Brasil</td>
<td>São Paulo</td>
<td>Bike Sampa</td>
<td>Tembici</td>
<td>260</td>
<td>2.600</td>
<td>59</td>
</tr>
<tr>
<td>País</td>
<td>Ciudad</td>
<td>Nombre</td>
<td>Operador</td>
<td>Estaciones</td>
<td>Bicicletas</td>
<td>Zona de operación (km²)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Brasil</td>
<td>Rio de Janeiro</td>
<td>Bike Rio</td>
<td>Tembici</td>
<td>260</td>
<td>2.600</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentín a</td>
<td>Buenos Aires</td>
<td>BA Ecobici por Tembici</td>
<td>Tembici</td>
<td>200</td>
<td>2.000</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>Santiago</td>
<td>Bike Santiago</td>
<td>Tembici</td>
<td>350</td>
<td>3.500</td>
<td>80</td>
</tr>
</tbody>
</table>

Tabla 2.33: Información de los sistemas de bicicletas compartidas de América Latina

Considerando las referencias presentadas anteriormente, se recomienda que los operadores tengan un margen para definir el número de bicicletas y zona de operación, dentro de unas dimensiones mínimas definidas por el gobierno. **Se recomienda tener una zona de operación con un mínimo de 25 km²**, para mantener dimensiones cercanas a la de otros sistemas importantes de América Latina. **No se recomienda tener un tamaño máximo**, ya que el interés del gobierno en maximizar la cobertura de este sistema.

Este tamaño mínimo es considerado adecuado como semilla, para en pasos siguientes lograr una expansión hacia nuevas zonas de la ciudad. Por este motivo se propondría que el periodo de contrato en esta implementación no sea más largo que lo necesario, según apunte el modelo financiero. A continuación, teniendo esta experiencia como base, se puede proponer en nuevos procesos expansiones hacia otras zonas de la ciudad.

2.2.2 Zona de operación mínima para el CAMEP

Esta zona mínima de operación debe atender a los objetivos del gobierno con el sistema, como lo mencionado anteriormente, utilizando para su definición el listado de criterios presentados en este ítem del informe.

Teniendo como primer criterio la dimensión, y considerando la recomendación de que el polígono mínimo debería abarcar un orden de magnitud de 25 km², se elimina la zona más pequeña (16,9 km²) y las más grandes (41 km² y 67 km²) de los candidatos. Qedarían los polígonos de 26,4 km² y 28 km² como alternativas.

Con relación a los otros criterios, la selección de alternativas de zonas de operación ya tuvo en consideración los criterios listados en este ítem del informe. Es decir, los criterios de demanda, estructura urbana, ciclo-infraestructura, integración con transporte público entre otros, que sirvieron de base para la definición de estas alternativas.

Se recomienda, que Bogotá tenga como objetivo la consolidación del sistema de bicicletas compartidas en la zona de 26,4 km², conectando La Candelaria, Santa Fe, Chapinero y Usaquén. Esta alternativa de zona representa un ajuste con base en la zona propuesta en el proceso de licitación de CAMEP de 2019, donde se buscó ajustar un poco su tamaño e incluyendo zonas nuevas que son consideradas importantes para la ciudad, como fue descrito en la presentación de la alternativa anteriormente.
A continuación, se presenta un mapa con la sobreposición de la zona de 26,4 km² con las troncales de Transmilenio (y sus estaciones), con la red de ciclorrutas y con los proyectos futuros de la ciudad. Se observa que esta zona tiene como características:

- Maximiza la demanda potencial (análisis anterior);
- Está en área con uso del suelo adecuado (análisis anterior);
- Está en zona con buena cobertura de ciclorrutas;
- Se ajusta a las barreras urbanas, impuestas especialmente por la Av. NQS y la Autopista Norte; evitando cruces por puentes peatonales o en puentes para tráfico mixto;
- Maximiza el potencial de integración con Transmilenio, con el cuidado para que la zona de operación llegue hasta intersecciones importantes de este sistema;
- Con relación a proyectos futuros, es atravesada por la Ciclorruta Alameda Medio Milenio y tiene puntos de integración con el Metro y Regiotram;
- Evita zonas con problemas de seguridad, en el que el sistema podría estar más susceptible a vandalismo y robos.

Los límites de esta zona también son indicados en este mapa. La zona está entre la Calle 7 y la Calle 127. Al oeste, tiene como límites, de sur a norte, en la Carrera 10, pasando a la Carrera 14 (Av. Caracas), Carrera 30 (Av. NQS) y la Autopista Norte después de la Calle 100. Al este, tiene como límites las carreras 3, 4, 5 y 7, dependiendo del tramo.

En los próximos pasos se profundizará en los criterios de selección en la licitación, con el objetivo de establecer los requisitos para distribución de las bicicletas y estaciones en la zona mínima de operación propuesta y fuera de estos límites, en el caso que operadores propongan expandirla. Asimismo, es importante aún revisar si hay interés de SDM en definir una zona de operación máxima o áreas con restricción, para orientar las propuestas de privados.
Figura 2.55: Zona de operación de 26,4 km²
Fuente: Elaborado por LOGIT
2.2.3 Zona de operación de permisos

El sistema de bicicletas compartidas establecido con permisos sería operado con bicicletas sin anclaje. Por ser potencialmente operado por múltiples empresas, no sabemos con anticipación el tamaño que tendría cada una de las empresas operadoras. En este caso, es difícil establecer un tamaño mínimo o máximo de la zona de operación que cada uno debe cumplir.

Se propone que la zona de operación autorizada sea la de 26,4 km², que es interesante para los operadores por diversos motivos (potencial de publicidad, seguridad, existencia de cicloinfraestructura, entre otros), donde ya están en operación las bicicletas de MUVO actualmente.

Si no hay otro sistema implementado, que sea considerado el sistema principal de la ciudad (como sería el caso de una concesión o de un CAMEP como se propone), se entiende que uno de los principales factores para definición de la zona de operación es la capacidad de fiscalización del uso adecuado del espacio público por la SDM y otros entes responsables. Además, si se opta por la implementación de cajones para estacionamiento de las bicicletas, la capacidad de implementación sería también un segundo factor importante. En este sentido, las SDM deben tener en cuenta estos factores en consideración para la validación de esta zona de operación. La discusión sobre el estacionamiento de las bicicletas sin anclaje se presenta a continuación, en el capítulo de especificaciones técnicas.

Por otro lado, en principio no hay restricción a que empresas soliciten permisos para operación en otras zonas de la ciudad, en procesos separados, sin competir con el sistema de bicicletas compartidas con CAMEP propuesto. Es decir, esta definición de zona no impide que haya ajustes o nuevas zonas de operación de bicicletas compartidas con permisos, si es de interés de SDM.

2.2.4 Zona de operación en el caso de permisos y CAMEP simultáneos

Para evaluación del escenario con operadores de permisos y CAMEP simultáneos, se consideran las premisas abajo, en complementación a las características que están en la introducción:

- El objetivo de tener dos sistemas (permisos y CAMEP) es ofrecer una alternativa de transporte para la mayor cantidad de personas posibles, y el área más amplio posible, y que puedan sostenerse financieramente sin subsidios;
- El sistema con permisos no tiene el objetivo de ser el más amplio de la ciudad, sino de generar una oportunidad para los operadores que están en la ciudad de seguir en operación y de permitir la entrada de operadores de bicicletas con servicios diferenciados (eléctricas, por ejemplo);
- El sistema con contrato CAMEP tiene el objetivo de ser más amplio y tener mayor duración, generando oportunidad para un patrocinio de más largo plazo y recuperación de una inversión de capital en un sistema basado en estaciones;

La estructuración que se propone como parte de este estudio es diferente de otros casos donde se implementó más de un sistema (con y sin anclaje) en la ciudad. Los casos que se han identificado son de ciudades que tienen sistemas de bicicletas públicas o compartidas ya consolidados, sustentados por el gobierno, donde llegan operadores con
bicicletas sin anclaje por su cuenta y riesgo en competición con el sistema original. Es decir, no hubo una planeación para definir las zonas de operación y su dimensionamiento, sino una dinámica orientada por la iniciativa del mercado. Es el caso de Ciudad de México (Ecobici) y de Barcelona (Bicing), por ejemplo.

En el caso de Ciudad de México, que tiene un sistema de bicicletas públicas consolidado y también un sistema con bicicletas sin anclaje (SiTIS) en operación, es posible notar que las zonas de operación de estos sistemas coinciden. Las figuras abajo muestran los orígenes de viajes en el SiTIS en la mañana (izquierda) y ubicación de estaciones de EcoBici (derecha).

![Figura 2.56: Orígenes de viajes en bicicletas de SiTIS en la mañana (6:00-10:59)](https://semovi.cdmx.gob.mx/storage/app/media/SITIS%20septiembre–noviembre%202019.pdf)

https://semovi.cdmx.gob.mx/storage/app/media/SITIS%20septiembre–noviembre%202019.pdf

![Figura 2.57: Estaciones de EcoBici](https://www.ecobici.cdmx.gob.mx/es/mapa-de-cicloestaciones)

Fuente: https://www.ecobici.cdmx.gob.mx/es/mapa-de-cicloestaciones

Quizás el proceso que más se acerca a lo propuesto para Bogotá en este estudio, en América Latina, haya sido el caso de São Paulo en 2019. En este caso había un sistema autorizado para operación en la ciudad (Bike Sampa) y llegaron otros operadores con bicicletas sin anclaje para operar (Yellow). Los dos sistemas tenían una zona de operación con bastante área en común.

El resultado de todo esto fue que la empresa Yellow, que empezó a operar posteriormente, entró en quiebra y dejó de operar en la ciudad en pocos meses. Cada una de las empresas tuvo una estrategia distinta en principio, las de Bike Sampa con membresías de más largo plazo y fidelización de los usuarios, y Yellow con pagos por viaje en principio. Asimismo, el interés fue de operar en esta zona común, donde estaba concentrada la demanda.
Se considera que el principal motivo por lo cual los diferentes sistemas están concentrados en las mismas zonas es porque es donde está la demanda potencial. En algunos casos, también porque corresponde a la zona con mayor capacidad de pago por los usuarios.

En el escenario en que se implementen los sistemas con permisos y con CAMEP en Bogotá, se recomienda que la zona de operación autorizada para ambos sea la misma, pues es la zona donde se observa la mayor demanda potencial. Asimismo, también se recomienda que el operador del sistema principal (CAMEP) pueda presentar en la licitación una propuesta que considere la expansión fuera de la zona mínima delimitada inicialmente.

Es importante también destacar que, si se implementan los dos sistemas simultáneamente, tener una zona de operación común permite concentrar los esfuerzos de supervisión y fiscalización del espacio público.

En cuanto a la interacción de los dos sistemas en el espacio público, se hacen las siguientes recomendaciones:

1. En la ubicación de estaciones del CAMEP y cajones para los vehículos de micromovilidad, se dará preferencia a la ubicación de una estación del CAMEP, siendo estas más rígidas en su posicionamiento y necesidad de espacio.
2. No se recomienda utilizar una distancia mínima entre estaciones y cajones. La ubicación de cajones adyacentes a las estaciones ayuda a organizar el espacio de tal forma que no se obstaculiza el estacionamiento de las bicicletas del CAMEP por bicicletas del permiso o patinetas.

2.3 Dimensionamiento de los sistemas

A partir de las demandas estimadas del día medio presentadas en los ítems anteriores, es posible estimar la cantidad de bicicletas necesarias para garantizar la oferta del sistema. Esto se puede hacer dividiendo la demanda por niveles de uso de bicicletas, representados por número de viajes por bicicleta por día.

2.3.1 Número de viajes por bicicleta por día

Es importante destacar que no es trivial estimar el número de viajes en bicicleta por día. Este valor depende de algunos factores inherentes a los desplazamientos realizados en el sistema, como la pendularidad y concentración espacial de los viajes, y factores inherentes al propio sistema, como la densidad de estaciones, balanceo y disponibilidad de bicicletas, la tarifa, el estado y mantenimiento de las bicicletas, la tecnología, las facilidades de registro y pago, entre otras cosas.

Como referencia del número de viajes por día en bicicleta en diferentes sistemas en el mundo, tenemos un gráfico que presenta estos valores en el eje vertical, y la densidad de estaciones por kilómetro cuadrado en el eje horizontal. Este gráfico ilustra la concentración de los sistemas entre 2 y 6 viajes/bicicleta/día, pero también casos con niveles de uso de las bicicletas superiores. El gráfico también indica una tendencia de aumento de viajes/bici/día con el aumento de la densidad de estaciones.
Figura 2.58: Viajes en bicicleta por día versus densidad de estaciones

Para complementar del gráfico anterior, se buscó información adicional de sistemas de América Latina. Además del número de viajes/bici/día, se buscó evaluar también el tiempo de operación del sistema, ya que se observó que este es un factor que también afecta de manera importante la consolidación del sistema y este indicador de viajes/bici/día.

Los datos de viajes/bicicleta/día no son información que los operadores de sistemas de bicicletas suelen divulgar. Para obtener estos valores, además de los sistemas que revelan abiertamente sus datos, se realizó un seguimiento de noticias, y en algunos casos es necesario calcular la demanda de viajes/bicicletas/día según el número de viajes y bicicletas divulgadas. Con base en esta información y el año de divulgación de la información, se estimó la antigüedad del sistema en el momento de la divulgación de datos. El resultado se muestra en la figura a continuación.

Se observa que, entre los sistemas con más de 2 años de operación, hay algunos en que la demanda se estabiliza (como Ciudad de México) y otros en que la demanda sigue creciendo. El número de viajes/bici/día en los sistemas ya más consolidados es más alto que en los sistemas nuevos.

Es importante señalar, que estos datos no son la totalidad de la información sobre estos sistemas ya que los mismos pueden haber experimentado expansiones y puede haber brechas de información en algunos años. En algunos sistemas, como Rio de Janeiro, São Paulo y Vila Velha, el año 0 representa el año del cambio de la tecnología y/o de operador. En este caso, como ya tiene usuarios que utilizaban las bicicletas compartidas antes, los sistemas empiezan con un número de viajes/bicicleta/días más altos.

Entre las ciudades presentadas, existen algunas que no cobran tarifas. Este es el caso de Medellín, donde crece más el número de viajes (demanda) que la flota, la flota de
bicicletas no crece en la misma proporción y el número de viajes/bici/día resultante es más alto que el de otros sistemas. Además, Fortaleza tiene una tarifa, pero los usuarios que tienen la tarjeta de transporte público de la ciudad no pagan por el sistema. Finalmente, es importante destacar que la tarifa está más asociada a la demanda que al número de viajes/bici/día, pues el operador o la ciudad pueden ajustar la flota para los niveles de servicio que consideren más adecuados en cada caso.

Figura 2.59: Datos de viaje/bici/día relacionado con la edad del sistema
Fuente: Elaboración propia

Para el dimensionamiento de un sistema de bicicletas compartidas, en general se considera que un sistema con 4 a 8 viajes por bicicleta por día es exitoso. Esta consideración está asociada a un buen uso del espacio público y de los activos del sistema.

Con un nivel de uso más alto (superior a 8 viajes/bici/día) hay riesgo de generar dificultades con el balanceo de las bicicletas y su mantenimiento. En consecuencia, el dimensionamiento no debería considerar un número de viajes más alto como objetivo, ya que puede resultar en dificultades operacionales. Por otro lado, si se considera un número muy bajo de bicicletas por día, es posible resultar con una sobreoferta de bicicletas, y un uso no tan eficiente del espacio público.

En términos de dimensionamiento, es recomendable establecer un número de bicicletas conservador o permitir que el operador defina el número de bicicletas que puede ofrecer según sus fuentes de ingresos. Es más fácil expandir el sistema al comprobar el éxito del sistema que hacer el movimiento contrario, de buscar maneras de reducir una sobreoferta.
Teniendo en cuenta este análisis, se han seleccionado diferentes niveles de viajes por bicicleta por día para el dimensionamiento de la flota necesaria en las bicicletas compartidas en Bogotá. Estos se explican a seguir:

2.3.1.1 Viajes/bici/día alto (CAMEP)

El número de viajes por bicicleta por día más alto fue estimado como un valor promedio de los casos más relevantes de América Latina, ubicados en ciudades grandes y muy grandes según la clasificación de “Very from the World Urbanization Perspectives of the United Nations” (2015). Se ha excluido los dos primeros años de operación de cada sistema, considerando que contienen el período de adaptación de los usuarios. Además, se ha excluido los sistemas gratuitos y outsiders.

Como resultado, se estima que el CAMEP tendrá 6,5 viajes/bici/día. Este es el valor redondeado para bajo de los niveles de usos de las bicicletas en Rosario, Guadalajara, Santiago, Rio de Janeiro y Ciudad de México (CDMX) en los años más recientes de operación para los cuales se ha encontrado información. Estos se representan en los puntos en la gráfica presentada anteriormente, que también se presentan en la tabla a continuación.

<table>
<thead>
<tr>
<th>Ciudad</th>
<th>Tamaño de ciudad</th>
<th>Pago/Gratis</th>
<th>Año</th>
<th>Edad (años)</th>
<th>Viajes por bici por día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosario</td>
<td>Grande</td>
<td>Pago</td>
<td>2020</td>
<td>4</td>
<td>8,0</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>Grande</td>
<td>Pago</td>
<td>2019</td>
<td>4</td>
<td>5,7</td>
</tr>
<tr>
<td>Santiago</td>
<td>Muy grande</td>
<td>Pago</td>
<td>2017</td>
<td>3</td>
<td>5,8</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>Muy grande</td>
<td>Pago</td>
<td>2018</td>
<td>7(1)</td>
<td>10,0</td>
</tr>
<tr>
<td>CDMX</td>
<td>Muy grande</td>
<td>Pago</td>
<td>2019</td>
<td>9</td>
<td>3,4</td>
</tr>
<tr>
<td>Promedio redondeado (para abajo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia consolidando varias fuentes de información. (1) Considera la segunda generación

En este sentido, para ser conservadores y considerando el alto potencial de demanda de Bogotá, se considera 6,5 viajes por bicicleta por día para la definición del número mínimo de bicicletas para el CAMEP.

2.3.1.2 Viajes/bici/día intermedio (CAMEP)

Con el objetivo de tener un escenario más conservador, desde el punto de vista de nivel de uso de las bicicletas para el CAMEP, para estimación de la flota mínima y posteriormente en el modelo financiero se establece este otro valor de viajes/bici/día como alternativa. Este valor implica que, para la misma demanda, hay un número de bicicletas disponibles más alto, y potencialmente un mejor nivel de servicio por una mayor disponibilidad de bicicletas.

Para la definición de este valor más conservador, se consideraron las mismas premisas del caso anterior, con algunos ajustes. Para considerar un número más amplio de sistemas como referencia, se ha incluido en el cálculo del valor promedio los números de viajes por bicicleta de dos ciudades grandes adicionales que no se habian incluido en
el valor anterior por representar sistemas un poco más pequeños (Porto Alegre y Salvador). Además, se ha eliminado Río de Janeiro que tenía 10 viajes/bici/día, por representar un nivel de utilización menos conservador.

Con estos ajustes, se considera en este escenario del CAMEP 5,3 viajes/bici/día. Los valores utilizados como referencia y en el cálculo de este valor promedio son presentados en la tabla a continuación.

Tabla 3.6: Número promedio de viajes por bicicleta por día (nivel intermedio)

<table>
<thead>
<tr>
<th>Ciudad</th>
<th>Tamaño de ciudad</th>
<th>Pago/Gratis</th>
<th>Año</th>
<th>Edad (años)</th>
<th>Viajes por bici por día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosario</td>
<td>Grande</td>
<td>Pago</td>
<td>2020</td>
<td>4</td>
<td>8,0</td>
</tr>
<tr>
<td>Guadalajara</td>
<td>Grande</td>
<td>Pago</td>
<td>2019</td>
<td>4</td>
<td>5,7</td>
</tr>
<tr>
<td>Porto Alegre</td>
<td>Grande</td>
<td>Pago</td>
<td>2018</td>
<td>6(1)</td>
<td>6,2</td>
</tr>
<tr>
<td>Salvador</td>
<td>Grande</td>
<td>Pago</td>
<td>2018</td>
<td>5(1)</td>
<td>3,0</td>
</tr>
<tr>
<td>Santiago</td>
<td>Muy grande</td>
<td>Pago</td>
<td>2017</td>
<td>3</td>
<td>5,8</td>
</tr>
<tr>
<td>CDMX</td>
<td>Muy grande</td>
<td>Pago</td>
<td>2019</td>
<td>9</td>
<td>3,4</td>
</tr>
<tr>
<td>Promedio redondeado</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,35</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia consolidando múltiples fuentes de información. (1) Considera la segunda generación del sistema.

2.3.1.3 Viajes/bici/día para Permisos (sin anclaje)

Los sistemas sin anclaje suelen tener una relación viaje/bicicleta/día menor que los sistemas con anclaje. Esto se debe a que hay sistemas sin anclaje que optan por tener más bicicletas en la vía y realizar menos operación de balanceo para maximizar el uso de las bicicletas. Para compensar, optan por aumentar la flota para que no falten bicicletas para un mismo número de usuarios, por ejemplo.

Para explorar esta relación se tomó el caso de la Ciudad de México, que tiene ambos tipos de sistemas. Según el informe Evaluación “SiTIS” (Secretaría de Movilidad de Ciudad de México, 2019), los sistemas Dezba y Jump, sin anclaje, iniciados a finales de 2018 y 2019 respectivamente, tienen una media de 2,9 viajes / bicicleta / día.
Esta cifra se comparó con la demanda inicial del sistema de bicicletas Ecobici con el promedio de los dos primeros años. La razón entre el valor de los sistemas sin anclaje y el de Ecobici indicó que el sistema de bicicletas con anclajes atrae un 39% más de demanda por bicicleta que el sistema sin anclaje.

En esta evaluación, se considera que las bicicletas sin anclaje, bajo permisos, realizarán 4 viajes/bicicleta/día, que representa 39% de los 6,5 viajes/bicicleta/día que se considera para el CAMEP.

2.3.2 Densidad de estaciones y bicicletas

Como referencia para el dimensionamiento del sistema, también se puede calcular densidades de bicicleta por kilómetro cuadrado y número de viajes por 1.000 residentes por día. Estos son indicadores utilizados para la comparación de la oferta y demanda de los sistemas de bicicletas públicas en manuales de referencia, como el “Bike Share Planning Guide” de ITDP (2018).

El gráfico presentado más adelante, del ‘Bike Sharing Planning Guide’ de 2018 de ITDP apunta que la mayoría de los sistemas considerados tienen menos que 50 viajes para cada 1.000 residentes y menos que 6 estaciones por kilómetro cuadrado. Considerando de manera simplificada que estos sistemas tuvieron 14 bicicletas por estación, tendríamos que estos sistemas tendrían hasta 85 bicicletas/km².
Figura 2.61: Densidad de estaciones y bicicletas por km² por viajes por 1.000 residentes
Fuente: ITDP "Bike Sharing Planning Guide" 2018

A continuación, en la siguiente tabla se presentan las referencias de los sistemas de América Latina, recopilados a partir de informaciones de LatinoSBP e informaciones de BikeShareMap. En la tabla identificamos que muchos sistemas tienen menos de 5 estaciones por km² y menos de 60 bicicletas por km². En esta, se destaca Ciudad de México con 9.2 estaciones/km² y 130 bicicletas/km², que también está en el gráfico anterior de ITDP.
Tabla 2.34: Información de sistemas de bicicletas compartidas de América Latina

<table>
<thead>
<tr>
<th>País</th>
<th>Ciudad</th>
<th>Nombre</th>
<th>Operador</th>
<th>Estaciones</th>
<th>Bicicletas</th>
<th>Zona de operación (km²)</th>
<th>Estaciones /km²</th>
<th>Bicicletas /km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brasil</td>
<td>Vila Velha</td>
<td>Bike VV</td>
<td>Tembici</td>
<td>20</td>
<td>200</td>
<td>11</td>
<td>1,8</td>
<td>18</td>
</tr>
<tr>
<td>Brasil</td>
<td>Porto Alegre</td>
<td>Bike POA</td>
<td>Tembici</td>
<td>41</td>
<td>410</td>
<td>11</td>
<td>3,7</td>
<td>37</td>
</tr>
<tr>
<td>Brasil</td>
<td>Sorocaba</td>
<td>IntegraBike</td>
<td>Tembici</td>
<td>25</td>
<td>200</td>
<td>13</td>
<td>1,9</td>
<td>15</td>
</tr>
<tr>
<td>México</td>
<td>Puebla</td>
<td>UrbanBici</td>
<td>Cyclo Share</td>
<td>72</td>
<td>1.100</td>
<td>21</td>
<td>3,4</td>
<td>52</td>
</tr>
<tr>
<td>Brasil</td>
<td>Santos</td>
<td>Bike Santos</td>
<td>Samba</td>
<td>37</td>
<td>370</td>
<td>22</td>
<td>1,7</td>
<td>17</td>
</tr>
<tr>
<td>Brasil</td>
<td>Salvador</td>
<td>Bike Salvador</td>
<td>Tembici</td>
<td>50</td>
<td>400</td>
<td>25</td>
<td>2,0</td>
<td>16</td>
</tr>
<tr>
<td>Brasil</td>
<td>Recife</td>
<td>Bike Recife</td>
<td>Tembici</td>
<td>80</td>
<td>800</td>
<td>28</td>
<td>2,9</td>
<td>29</td>
</tr>
<tr>
<td>México</td>
<td>Guadalajara</td>
<td>Mibici</td>
<td>BKT Bici Pública</td>
<td>274</td>
<td>2.925</td>
<td>49</td>
<td>5,6</td>
<td>60</td>
</tr>
<tr>
<td>México</td>
<td>CDMX</td>
<td>Ecobici</td>
<td>Clear Channel</td>
<td>480</td>
<td>6.800</td>
<td>52</td>
<td>9,2</td>
<td>131</td>
</tr>
<tr>
<td>Brasil</td>
<td>Fortaleza</td>
<td>Bicicletar</td>
<td>Sertel</td>
<td>130</td>
<td>1.300</td>
<td>59</td>
<td>2,2</td>
<td>22</td>
</tr>
<tr>
<td>Brasil</td>
<td>São Paulo</td>
<td>Bike Sampa</td>
<td>Tembici</td>
<td>260</td>
<td>2.600</td>
<td>59</td>
<td>4,4</td>
<td>44</td>
</tr>
<tr>
<td>Brasil</td>
<td>Rio de Janeiro</td>
<td>Bike Rio</td>
<td>Tembici</td>
<td>260</td>
<td>2.600</td>
<td>71</td>
<td>3,7</td>
<td>37</td>
</tr>
<tr>
<td>Argentina</td>
<td>Buenos Aires</td>
<td>BA Ecobici por Tembici</td>
<td>Tembici</td>
<td>200</td>
<td>2.000</td>
<td>80</td>
<td>2,5</td>
<td>25</td>
</tr>
<tr>
<td>Chile</td>
<td>Santiago</td>
<td>Bike Santiago</td>
<td>Tembici</td>
<td>350</td>
<td>3.500</td>
<td>80</td>
<td>4,4</td>
<td>44</td>
</tr>
</tbody>
</table>

2.3.3 Consideraciones sobre la demanda del día medio

Es importante destacar que, en la evaluación, se identificó que los encuestados fueron muy optimistas con relación al cambio modal hacia la bicicleta. Este tema se ha mencionado en las consideraciones iniciales de la estimación de demanda y en el ítem sobre factor de ajuste de frecuencia de viaje en bicicletas compartidas.

Si se considera, que todos los que declaran que utilizarían las bicicletas compartidas lo harían en todos viajes que tienen el sistema disponible, Bogotá tendría un indicador de número de viajes por 1.000 residentes podría llegar a ser 150, tres (3) veces mayor que algunos de los sistemas más exitosos que se presentan en el gráfico con densidades de estaciones de ITDP arriba (concentrados en su mayoría abajo de los 50 viajes para cada 1.000 residentes). Por esta razón se utiliza para el dimensionamiento las demandas de día medio, después de la aplicación del factor de ajuste de frecuencia de uso de las bicicletas compartidas.

Los resultados de los números de viajes para los diferentes escenarios de tarifas y tamaños de zonas de operación evaluados se presenta, a continuación. Para las demandas de día óptimo, para el polígono de 26,4 km² se observa entre 96 y 154 viajes para cada mil residentes, mientras para demandas del día medio, que se propone usar, estos valores están entre 36 y 57, que son más compatibles con los de otras ciudades.

Tabla 2.35: Viajes por 1.000 habitantes por día en el día optimo y día medio

<table>
<thead>
<tr>
<th>Zona de operación</th>
<th>Población (según expansión de EODH2019)</th>
<th>Tarifa (COP / 15 minutos)</th>
<th>Total de viajes estimados SBC (día óptimo)</th>
<th>Viajes / 1.000 hab./día</th>
<th>Total de viajes estimados SBC (día medio)</th>
<th>Viajes/ hab./día</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciudad</td>
<td>7.540.000</td>
<td>1.800</td>
<td>358.578</td>
<td>48</td>
<td>132.674</td>
<td>18</td>
</tr>
<tr>
<td>Ciudad</td>
<td>7.540.000</td>
<td>3.000</td>
<td>206.438</td>
<td>27</td>
<td>76.382</td>
<td>10</td>
</tr>
<tr>
<td>67 km²</td>
<td>805.000</td>
<td>1.800</td>
<td>88.559</td>
<td>110</td>
<td>32.767</td>
<td>41</td>
</tr>
<tr>
<td>67 km²</td>
<td>805.000</td>
<td>3.000</td>
<td>55.697</td>
<td>69</td>
<td>20.608</td>
<td>26</td>
</tr>
<tr>
<td>41 km²</td>
<td>475.000</td>
<td>1.800</td>
<td>60.495</td>
<td>127</td>
<td>22.383</td>
<td>47</td>
</tr>
<tr>
<td>41 km²</td>
<td>475.000</td>
<td>3.000</td>
<td>38.111</td>
<td>80</td>
<td>14.101</td>
<td>30</td>
</tr>
<tr>
<td>28 km²</td>
<td>305.000</td>
<td>1.800</td>
<td>45.746</td>
<td>150</td>
<td>16.926</td>
<td>55</td>
</tr>
<tr>
<td>28 km²</td>
<td>305.000</td>
<td>3.000</td>
<td>28.586</td>
<td>69</td>
<td>10.577</td>
<td>35</td>
</tr>
<tr>
<td>26,4 km²</td>
<td>310.000</td>
<td>1.800</td>
<td>47.724</td>
<td>154</td>
<td>17.658</td>
<td>57</td>
</tr>
<tr>
<td>26,4 km²</td>
<td>310.000</td>
<td>2.250</td>
<td>40.051</td>
<td>129</td>
<td>14.819</td>
<td>48</td>
</tr>
<tr>
<td>26,4 km²</td>
<td>310.000</td>
<td>3.000</td>
<td>29.870</td>
<td>96</td>
<td>11.052</td>
<td>36</td>
</tr>
<tr>
<td>16,9 km²</td>
<td>210.000</td>
<td>1.800</td>
<td>34.484</td>
<td>164</td>
<td>12.759</td>
<td>61</td>
</tr>
<tr>
<td>16,9 km²</td>
<td>210.000</td>
<td>3.000</td>
<td>21.489</td>
<td>102</td>
<td>7.951</td>
<td>38</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

2.3.4 Dimensionamiento general

La recomendación de dimensiones del sistema en este estudio considera la estimación de demanda que fue calculada con base en la Encuesta de Preferencia Declarada y los Modelos de Elección Discreta presentados en este informe, pero considera también valores de “benchmarks” internacionales para definición de los niveles de uso de las bicicletas y cálculo de la flota.
Las tablas que se muestran a continuación, presentan, para cada zona de operación evaluada y nivel de tarifa, la demanda (número de viajes por día), número de viajes por 1.000 residentes por día, número de bicicletas estimado y densidad de bicicletas por kilómetro cuadrado. Los resultados se presentan para los diferentes niveles de tarifa por 15 minutos:

- COP 1.800 (tarifa fija por desbloqueo de COP 750 + COP 70/min variable);
- COP 2.250 (tarifa fija por desbloqueo de COP 750 + COP 100/min variable);
- COP 3.000 (tarifa fija por desbloqueo de COP 750 + COP 150/min variable).

Los números de viajes por día por bicicleta utilizados para calcular la flota son los que fueron presentados en el ítem anterior de este informe. Se utiliza un nivel más alto de uso con 6,5 viajes/día/bicicleta para el caso de alto desempeño en la operación, un intermedio con 5,3 viajes/bici/día y con 4,0 viajes/día/bicicleta que resultaría en una flota más alta que se necesitaría para atender a la demanda estimada.

Esta demanda estimada considera que la zona tiene un nivel tarifario y otros parámetros únicos (uniformes) para toda la zona. Se considera que estas demandas serían alcanzadas por un solo operador (por ejemplo, un CAMEP) o serían asignadas entre los diferentes operadores que implementen bicicletas compartidas en la ciudad de Bogotá, si este es el caso.

Es importante establecer que, en el modelo de negocios considerado, el gobierno no interviene en la tarifa del operador, de manera que estos valores presentados son una referencia, para fines de dimensionamiento. El operador podrá elegir las tarifas que utilizará, dependiendo de los ingresos no tarifarios que obtenga y los ingresos tarifarios que necesite para cerrar la cuenta.

Incluso, los operadores pueden tener estructuras tarifarias completamente distintas de esta. Además, los dos niveles de tarifa considerados son más bajos que los del operador por MUVO en la actualidad (julio de 2020). Se encuentra en la página de MUVO 2 tarifas diferentes. Por un lado, se indica que la tarifa es COP 1.500 para desbloquear la bicicleta + COP 250 por minuto (más alta que las propuestas). Por otro, en la página web de preguntas y respuestas, se indica una tarifa fija de COP 3.000 para cada 30 minutos, que es mucho más cercano a los escenarios de tarifas evaluados, aunque es menos atractivo para viajes cortos y de última milla. Se considera que este sistema tiene un público específico, con las bicicletas eléctricas, que no es lo mismo que se considera con la implementación de un sistema más amplio con este estudio.
Tabla 2.36: Indicadores de Sistema

<table>
<thead>
<tr>
<th>Zona de operación</th>
<th>Tarifa (COP / 15 minutos)</th>
<th>Total de viajes estimados SBC (día medio)</th>
<th>Población (según expansión de EODH2019)</th>
<th>Viajes / 1.000 hab./día</th>
<th>Número de bicicletas</th>
<th>Densidad de bicicletas (bici/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6,5 viajes/bici/día</td>
<td>5,3 viajes/bici/día</td>
</tr>
<tr>
<td>Ciudad</td>
<td>1.800</td>
<td>132.674</td>
<td>7.540.000</td>
<td>17,6</td>
<td>20.411</td>
<td>25.033</td>
</tr>
<tr>
<td>Ciudad</td>
<td>3.000</td>
<td>76.382</td>
<td>7.540.000</td>
<td>10,1</td>
<td>11.751</td>
<td>14.412</td>
</tr>
<tr>
<td>67 km2</td>
<td>1.800</td>
<td>32.767</td>
<td>805.000</td>
<td>40,7</td>
<td>5.041</td>
<td>6.182</td>
</tr>
<tr>
<td>67 km2</td>
<td>3.000</td>
<td>20.608</td>
<td>805.000</td>
<td>25,6</td>
<td>3.170</td>
<td>3.888</td>
</tr>
<tr>
<td>41 km2</td>
<td>1.800</td>
<td>22.383</td>
<td>475.000</td>
<td>47,1</td>
<td>3.444</td>
<td>4.223</td>
</tr>
<tr>
<td>41 km2</td>
<td>3.000</td>
<td>14.101</td>
<td>475.000</td>
<td>29,7</td>
<td>2.169</td>
<td>2.661</td>
</tr>
<tr>
<td>28 km2</td>
<td>1.800</td>
<td>16.926</td>
<td>305.000</td>
<td>55,5</td>
<td>2.604</td>
<td>3.194</td>
</tr>
<tr>
<td>28 km2</td>
<td>3.000</td>
<td>10.577</td>
<td>305.000</td>
<td>34,7</td>
<td>1.627</td>
<td>1.996</td>
</tr>
<tr>
<td>26,4 km2</td>
<td>1.800</td>
<td>17.658</td>
<td>310.000</td>
<td>57</td>
<td>2.717</td>
<td>3.332</td>
</tr>
<tr>
<td>26,4 km2</td>
<td>2.250</td>
<td>14.819</td>
<td>310.000</td>
<td>47,8</td>
<td>2.280</td>
<td>2.796</td>
</tr>
<tr>
<td>26,4 km2</td>
<td>3.000</td>
<td>11.052</td>
<td>310.000</td>
<td>35,7</td>
<td>1.700</td>
<td>2.085</td>
</tr>
<tr>
<td>16,9 km2</td>
<td>1.800</td>
<td>12.759</td>
<td>210.000</td>
<td>60,8</td>
<td>1.963</td>
<td>2.407</td>
</tr>
<tr>
<td>16,9 km2</td>
<td>3.000</td>
<td>7.951</td>
<td>210.000</td>
<td>37,9</td>
<td>1.223</td>
<td>1.500</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT
Teniendo en cuenta, específicamente la zona de operación 26,4 km², se presentan 9 escenarios diferentes de operación. Se considera que se evaluaron 3 niveles de tarifa y 3 niveles de uso de la bicicleta (en viajes/día/bicicleta). En este caso, se tiene que definir cuál es el escenario de referencia para el dimensionamiento del sistema.

Inicialmente, se presentan algunos resultados del modelo de elección discreta utilizado para estimación de la demanda de esta zona de operación:

- Distancias de viajes promedio: aproximadamente 2,3 km;
- Tiempo de viaje promedio: aproximadamente 9,3 minutos (en bicicleta);
- Tarifa promedio resultantes:
 - COP 1.400 para la tarifa más baja;
 - COP 1.685 para la tarifa media;
 - COP 2.100 para la tarifa más alta.

Las principales consideraciones para la zona de operación, son las siguientes:

Escenario con tarifa más baja

Tiene una demanda más alta (17.658 viajes/día), que resulta en un número de viajes por 1.000 habitantes muy alto, que solo se alcanza en Ciudad de México según los benchmarks revisados. Además, mismo con 6,5 viajes/bici/día, resultaría en más de 100 bicicletas/km², superior a todos los sistemas observados en América Latina con excepción de EcoBici en Ciudad de Mexico después de muchos años de operación. Por lo tanto, no es un escenario conservador para definición de un número mínimo de bicicletas a implementar, ni adecuado para la evaluación financiera.

Escenario con tarifa media

Tiene una demanda de 14.819 viajes/día, que resulta en 47 viajes/1.000 habitantes/día, que es un valor alto en comparación con otros sistemas en el Bike-Sharing Planning Guide (ITDP, 2018), que se alcanza algunas ciudades, como Dublin, París, Barcelona, de las que se tiene esta información calculada.

Con 6,5 viajes/bici/día, se requiere un total de 86 bicicletas/km². Este valor es también alto, pero se alcanza en algunas ciudades. En América Latina, según los datos presentados, esta densidad de bicicleta solo se observa en Ciudad de México. Con 5,3 viajes/bici/día, se requiere 106 bicicletas/km², que otra vez es un valor más alto que lo observado en muchas ciudades, y menos conservador para definición del número mínimo de bicicletas a implementar.

A pesar de que es una demanda alta y una densidad alta de bicicletas, se considera que este dimensionamiento es factible y podría ser observado en Bogotá. Para este nivel de tarifa y demanda, la flota mínima recomendada es de 2.280 bicicletas (alto uso de bicicletas – 6,5 viajes/bici/día). Se podría establecer una flota mínima más alta, en una alternativa con 2.796 bicicletas, calculada con base en un uso intermedio de bicicletas de 5,3 viajes/bici/día.

Escenario con tarifa alta

Tiene una demanda de 11.052 viajes/día, que resulta en 35 viajes/1.000 habitantes/día. Este también es un nivel alto en comparación con otros sistemas en el Bike-Sharing
Planning Guide (ITDP, 2018), pero ya se acerca de lo observado en Montreal y Nueva York, además de las ciudades mencionadas anteriormente. Además, con 6,5 viajes/bicicleta/día, se requiere un total de 64 bicicletas/km². Este valor es también alto, pero se alcanza en algunas ciudades. En América Latina, según los datos presentados, esta densidad de bicicleta está cerca de la observada en Guadalajara (60 bicis/km²), por ejemplo.

Para este nivel de tarifa y demanda, se podría esperar el mismo nivel utilización de las bicicletas, con 6,5 viajes/bici/día, o también podría esperarse un nivel un poco más bajo, de hasta 4 viajes/bici/día. En este caso, la flota estimada estaría entre 1.700 y 2.700 bicicletas. Mismo que este no corresponda al escenario recomendado, se presenta aquí este rango de bicicletas como un análisis de sensibilidad y una referencia adicional para la definición del número mínimo de bicicletas, ya que algún operador interesado en el sistema podría estar considerando una estrategia de operación con tarifas más altas.

Escenario considerado para dimensionamiento

Considerando los escenarios presentados arriba, y las referencias internacionales utilizadas para validación, se recomienda tener como escenario para dimensionamiento el que tiene 14.819 viajes/día y flota de 2.280 bicicletas, que corresponde al escenario con tarifa para 15 minutos de COP 2.250.

Es importante considerar que, aunque hayan sido adoptados valores medianos para la estimación de la demanda de un día medio, el dimensionamiento resultó en 47 viajes/1.000 habitantes y 86 bicicletas por km². En comparación con otros sistemas evaluados por ITDP, el número de viajes/1.000 habitantes está en el límite superior observado. En comparación con otros sistemas de América Latina, el número de bicicletas/km² estimado es superior a la mayoría de los sistemas, excepto por Ciudad de México.

El motivo para dimensionar el sistema de bicicletas compartidas de Bogotá con una oferta alta, comparable a los sistemas con más oferta y demanda entre las referencias consideradas, es el alto potencial de uso de bicicletas que existe en la ciudad. Bogotá tiene muchos ciclistas, un crecimiento anual de ciclistas importante, una predisposición al uso de bicicletas compartidas que ha sido evidenciada en la Encuesta de Preferencia Declarada y un potencial importante para viajes de última milla en conexión con Transmilenio.

En este sentido, se reconoce un alto potencial de demanda en Bogotá, pero también se llama la atención sobre la necesidad de ser conservadores al establecer una flota mínima, con el fin de no generar una barrera a la participación de operadores en la licitación.

2.3.5 Dimensionamiento de CAMEP, Permisos y escenario combinado

Actualmente, existe en Bogotá permisos para operación de bicicletas por el operador MUVO (estimado en 700 bicicletas), que son válidos por el período de la pandemia de COVID-19. Simultáneamente, este estudio está evaluando la implementación de un sistema principal, bajo un contrato de CAMEP, y la posibilidad de renovación de estos permisos. Este escenario es considerablemente atípico y no hay referencias de buenas prácticas en este sentido.
Lo que se considera más adecuado, teniendo en cuenta los casos de ciudades que tienen sistemas de bicicletas compartidas más consolidados, es que se priorice la implantación de un sistema principal. Este se aplicaría, aunque no se está proponiendo un modelo de negocios en que el gobierno aporte recursos para consolidación de este sistema. Es decir, la recomendación inicial es que se implemente el CAMEP y se reevalúe los objetivos y condiciones de los permisos, sin dejar de informar los potenciales interesados en el contrato de CAMEP sobre los planes que tengan.

Se presenta el dimensionamiento en 3 escenarios: CAMEP solo, Permisos solo y CAMEP y Permisos Simultáneos. La discusión sobre la sobreposición de estos sistemas se amplía en este último ítem.

2.3.5.1 CAMEP

El sistema de bicicletas compartidas bajo un contrato de CAMEP es establecido como el que tiene una más amplia cobertura y un contrato que resulta en más garantías para el gestor y la empresa aprovechadora. En este sentido, dentro de las alternativas, este sistema se debe estimular para que sea lo más amplio posible, dentro del interés y capacidad de gestión por la SDM otras entidades relacionadas.

Las recomendaciones con respecto a la zona de operación fueron discutidas en el capítulo anterior de este informe. Se propuso que el sistema de bicicletas compartidas en Bogotá cubra por lo menos la zona propuesta de 26,4 km² como punto de partida, pero no estar limitado a esta zona.

Se recomienda establecer un número mínimo de bicicletas en la licitación de 2.280 bicicletas (o el valor redondeado de 2.300), que corresponde al número mínimo de bicicletas presentado en el ítem de dimensionamiento general, sin considerar la implementación y operación simultánea de alquiler de bicicletas bajo permisos. Además, se considera que es posible adoptar una alternativa con flota mínima más alta con 2.796 bicicletas (o el valor redondeado de 2.800) si el gobierno así lo desea, con un aumento de riesgo moderado.

Se considera que, una vez que el prestador del servicio ofrezca una buena cobertura en esta zona, podría proponer en la licitación una zona más amplia. En la licitación, se puede definir como criterio de selección el mayor número de bicicletas o área ocupada por bicicletas y un criterio de cobertura mínimo para la zona de operación que se propone cubrir, por ejemplo, garantizando que toda la zona de 26,4 km² tenga 90% de su área a una distancia lineal de 400 metros de una estación. Esta sería la manera de priorizar la expansión del sistema al mismo tiempo garantizando que el sistema tenga una buena cobertura y acceso.

Si hay, en operación en la misma zona de la ciudad un sistema de bicicletas compartidas bajo permisos, que aumenta el riesgo de demanda para un operador bajo un contrato de CAMEP, la alternativa para minimizar riesgo es definir, en los pliegos de la licitación, que número de bicicletas mínimo sería el número de bicicletas inicial estimado aquí menos el número de bicicletas con permisos. Esto se discute en el ítem relativo a permisos simultáneos a un CAMEP.

El sistema de bicicletas compartidas establecido bajo un contrato de CAMEP será basado en estaciones, como se ha discutido anteriormente. No se define la tecnología de las estaciones, de manera que puedan ser estaciones con anclaje convencional, en
que el desbloqueo de las bicicletas ocurra en estaciones automáticas, o puedan ser
estaciones más ligeras para anclar bicicletas de 4ª generación, en donde el desbloqueo
sea en ellas mismas. Es decir, estaciones que funcionan como spots para anclar las
bicicletas y garantizar una mejor organización del espacio público y más seguridad para
las bicicletas, pero con inteligencia en las propias bicicletas.

En los sistemas de 4ª generación es posible tener más flexibilidad con relación al tamaño
y formato de la estación. Además, puede ser más fácil tener estaciones divididas en
partes para no bloquear el acceso a los edificios, por ejemplo. Para garantizar flexibilidad
con relación al tamaño de las estaciones, se propone que la licitación establezca criterios
de cobertura y no necesariamente números mínimos o máximos de estaciones.

Lo que se quiere evitar es que haya un número exagerado de estaciones, o estaciones
que se queden vacías. En este sentido, la recomendación es similar a la de los pliegos
de 2019: que haya un máximo de 2,5 y un mínimo de 1,5 de anclajes por bicicleta.
Esto también orienta al operador para hacer un balanceo y no dejar estaciones vacías.

2.3.5.2 Permisos

Si se implementan bicicletas compartidas bajo permisos para aprovechamiento del
espacio público sin una perspectiva de otro sistema con un contrato (sea CAMEP o una
concesión) y una visión de más largo plazo, el dimensionamiento podría ser similar a lo
presentado para el CAMEP, que ya representa una buena densidad de bicicletas por
km². En este caso, en lugar de una flota mínima, se establece una flota máxima. La
recomendación sería autorizar un máximo de 2.300 bicicletas y evaluar el
funcionamiento y interés del mercado antes de ampliar.

Es importante considerar que hay diversos aspectos que generan incertidumbre al
dimensionamiento de un sistema sin anclaje con múltiples operadores. A veces los
sistemas sin anclaje, por su modelo de negocio, optan por tener más bicicletas y un
número de viajes/bicicleta/días más bajo, invirtiendo menos en un proceso de balanceo
como podría ocurrir en otros sistemas con anclaje. En este caso, para la misma demanda
de 14.819 viajes por día, si se consideraran 4 viajes/bicicleta/día, se podría
llegar a 3.705 bicicletas.

Otra posibilidad es que el sistema sin anclaje logre tener menos ingresos por patrocinios,
y sea obligado a tener tarifas más altas, que resulten en una demanda inferior al
escenario anterior. Podría ser el caso que alcanzar una demanda de 11.052 viajes/día
(escenario de tarifa alta presentado), que resulto en una flota de 2.763 bicicletas para el
caso con 4 viajes/bicicleta/día.

Teniendo en cuenta esta incertidumbre, la recomendación sigue siendo autorizar un
número máximo de bicicletas igual a lo propuesto en el dimensionamiento general arriba,
con 2.300 bicicletas, y, si es necesario aumentaría el número de bicicletas autorizadas
en los años siguientes, de acuerdo con la demanda que se observe.

Como fue mencionado anteriormente, considerando el objetivo de maximizar la oferta de
bicicletas compartidas como alternativa para las personas, se podría autorizar tantas
bicicletas cuanto haya interesados en operar. Todavía, se considera que la definición del
número de bicicletas a autorizar debe considerar la capacidad para fiscalización y gestión
del espacio público.
La fiscalización del sistema, para evitar el estacionamiento de bicicletas bloqueando andenes y accesos, es un aspecto crítico para que los permisos no representen un problema. Para esto es necesario fiscalizar el uso del espacio, para garantizar que ocurra de manera ordenada. Al no tener estaciones para anclar las bicicletas, lo que facilita la fiscalización, se podría necesitar de un esfuerzo adicional en esta actividad. De la misma manera, ampliar la zona de operación también amplía esta necesidad de fiscalización. Para esto, en síntesis, es necesario que la SDM se organice para tener la capacidad de fiscalización adecuada.

En este sentido, se recomendaría autorizar un número de bicicletas ajustado para la demanda estimada y calibrar este número de autorizaciones de acuerdo con las condiciones que se presenten.

2.3.5.3 Combinado (permisos simultáneos a un CAMEP)

El dimensionamiento de las bicicletas compartidas con permisos, en un escenario en el que se propone que haya otro sistema operando en paralelo bajo un contrato de CAMEP, debe tener en cuenta algunos aspectos que son explicados a continuación.

En primer lugar, es necesario tener claro los objetivos de cada uno de los sistemas en las políticas de movilidad urbana. En este caso, se entiende que el sistema bajo permisos representa una oportunidad para una implementación más rápida de una alternativa de micromovilidad para la población, pero que es frágil por no tener un contrato que permita especificar los servicios y compromisos de forma oportuna. El sistema bajo CAMEP ofrece la oportunidad de tener un contrato y compromisos con el operador, aunque también no permite especificar como debe ser la operación. Entre estas dos opciones, el CAMEP resulta más adecuado y debería ser priorizado.

Este tema se tratará con más detalle en el capítulo de Estructuración Legal e Institucional y en el Informe de Modelo de Negocios y Financiero. En el Informe de Modelo de Negocios y Financiero se presenta una evaluación de los riesgos, que incluye la evaluación del riesgo de los sistemas en paralelo.

En segundo lugar, es necesario tener en cuenta las implicaciones de la competencia entre los sistemas. Al mismo tiempo que la competición puede contribuir para una oferta más amplia y tarifas más bajas, tal vez esto también podría resultar en que las empresas autorizadas (i) compitan por patrocinios escasos, (ii) tengan una competencia predatoria que dificulte sostenibilidad financiera en un negocio que tiene dificultad en generar utilidad, (iii) ocupen más espacio público para garantizar que cada empresa independientemente tenga buena oferta.

Por ejemplo, el operador de CAMEP haría una inversión y establecería operación en una zona más amplia, mientras el operador de permisos probablemente estaría con sus bicicletas concentrados en las zonas con más demanda y potencial de generar patrocinios. La competición entre permisos y CAMEP ocurriría de manera más intensa justamente en la zona que podría generar más ingresos y contribuir más para una operación más amplia del sistema bajo CAMEP. Por no haber mucha información confiable sobre el impacto de la competición, por ser un fenómeno reciente y por no tener claridad sobre quien serían los participantes, es difícil tener una recomendación clara sobre el nivel de competición a establecer.
En tercer lugar, para un dimensionamiento más adecuado lo ideal sería entender quiénes serían los operadores y cuáles serían las características de los sistemas a ser implementados. Esto se aplica especialmente a los permisos, ya que no hay mucha claridad de quienes serían los nuevos actores que se presentarían.

En el caso en que existiera un sistema de bicicletas compartidas consolidado, con un sistema de membresías y usuarios frecuentes, sería más factible intentar estimar la demanda que puede captar un segundo sistema que llega para operar en la misma zona, y esto permitiría un dimensionamiento con base en la demanda de cada uno. Sin embargo, en este caso, no se sabe cuántas empresas se presentarán para obtener permisos, cuantas bicicletas operarán cada una, en qué zona estarán concentradas, si operarán bicicletas eléctricas o manuales y si operarán con tarifas altas o bajas, no hay parámetros suficientes para estimar que porcentaje de la demanda potencial de bicicletas compartidas podrían captar.

En resumen, el dimensionamiento de los permisos en paralelo con otro sistema, que se propone que sea el principal por tener un contrato, es un tema complejo. No se conocen experiencias de dimensionamientos de bicicletas compartidas hechos de esta manera. Las ciudades con múltiples operadores no lo planificaron, sino que establecieron autorizaciones para regular mínimamente operadores que llegaron para operar mismo sin autorizaciones, o sea, con el objetivo de establecer un marco regulatorio mínimo para lo que ya estaba en operación. Este ítem del informe presenta, entonces, una recomendación teniendo en cuenta las premisas presentadas anteriormente.

Es importante resaltar que, aunque los operadores potencialmente interesados en el CAMEP no expresaron oposición directa a esta competición durante la elaboración del estudio de mercado. Sin embargo, han manifestado que es muy posible que afecte el negocio dependiendo del formato. Consideran que la afectación sería menor en un modelo de negocios en el que haya aporte de recursos públicos, que disminuya los riesgos. Aún así, no siendo el caso que se evalúa aquí, se considera que esta operación con sistemas simultáneos, sin que haya una operación consolidada en la ciudad, aumenta los riesgos a la implantación de un CAMEP.

Se recomienda que las dimensiones de los permisos deberían ser limitadas, especialmente para permitir que la empresa que tenga una inversión más alta y las responsabilidades establecidas en un contrato de CAMEP pueda tener ventajas en términos de tamaño de la zona de operación, número de bicicletas, potencial de obtención de patrocinios y demanda para recuperar su inversión.

Se recomienda que la SDM otorgue permisos suficientes para que los operadores que están en la ciudad puedan seguir su operación siempre y cuando no superen el número máximo de bicicletas recomendado.

Después de implementar el sistema basado en estaciones bajo un CAMEP, se debería evaluar el desempeño de los permisos para decidir sobre la manutención de esta operación con el mismo tamaño, su aumento o su reducción a lo largo del tiempo, dependiendo de los beneficios y conflictos observados.

En Ciudad de México, donde en noviembre de 2019 estaban en operación el sistema público EcoBici 6.800 bicicletas, se autorizaron 900 bicicletas de Dezba y 1.900 bicicletas de Jump para operar aproximadamente en la misma zona. Las 2800 bicicletas sin anclaje autorizadas representan aproximadamente 30% del total de bicicletas compartidas en la
ciudad. Todavía, es importante destacar que en este caso el sistema principal es público y cuenta con recursos públicos para su financiación, diferentemente del caso que se propone en Bogotá.

En Bogotá, por no tener un sistema ya consolidado como es el caso de EcoBici y por tener más riesgos financieros y de demanda asumidos por el operador del CAMEP, se considera que el tamaño de los permisos debería ser menor que el de Ciudad de México (29%), pues esta competencia aumenta más el riesgo del negocio.

En Permisos, se recomienda que el número de bicicletas autorizadas no supere un cuarto (25%) de la flota de la ciudad. Con esto, se establecería una flota máxima de permisos de 575 bicicletas.

En el CAMEP, se propone que el número mínimo de bicicletas sea reducido de 2.300 para 1.725 bicicletas, aunque se espera que los oferentes no presenten propuestas con número de bicicletas inferior a lo recomendado para el caso sin permisos simultáneos, de 2.300 bicicletas.

Como alternativa para el CAMEP, se podría adoptar el número de bicicletas mínimo de 2.225 bicicletas, en el caso de interés del gobierno en aceptar un riesgo ligeramente superior y garantizar que no haya ofertas de dimensiones interiores. Esta sería la flota estimada para 5,3 viajes por bicicleta por día (2.800) menos el número de bicicletas autorizadas por Permisos.

Esta limitación del tamaño del permiso está asociada a la no imposición de un riesgo alto a un operador que esté interesado en implementar un sistema con estaciones bajo un marco contractual y obligaciones más estrictas. Además, limitar el plazo de los permisos, por ejemplo, también sirve para delimitar mejor la función de cada sistema. Si la percepción de riesgo para el interesado en CAMEP es grande, esto puede reducir el interés que tenga en la implementación, pudiendo generar una licitación desierta.

Asimismo, se entiende que estas son dimensiones pequeñas o moderadas para los permisos. Esta propuesta considera, como se mencionó anteriormente, que la prioridad se daría a un sistema con estaciones y con un contrato entre el operador y el Distrito. Se contempla la posibilidad de otorgar más permisos a lo largo del tiempo, según desempeño de las empresas que operan con permisos, pero es importante tener en cuenta que esto puede afectar la implementación del CAMEP.

Sobre la zona de operación, como se ha mencionado anteriormente, esta recomendación se aplica para los permisos que sean otorgados para operar dentro del mismo polígono de la operación del sistema de bicicletas compartidas con CAMEP. Es decir, si hay un operador interesado en una operación fuera de este polígono, SDM puede tener un análisis separado, ya que no hay una exclusividad en los marcos jurídicos en que se proponen estos sistemas.

2.3.6 Dimensionamiento Alternativo de CAMEP, Permisos y escenario combinado
Este ítem presenta los temas desarrollados posteriormente en conjunto con SDM, con base en los escenarios presentados en el ítem 2.3.5 – Dimensionamiento CAMEP, Permisos y escenario combinado.

A continuación se se presentan los escenarios alternativos con sus características y resultados.

2.3.6.1 Escenario alternativo para CAMEP

Después de la revisión de los primeros escenarios propuestos con el equipo técnico de la Secretaría Distrital de Movilidad (SDM), se ha definido un escenario alternativo a considerar en la evaluación. Este ítem presenta el escenario considerado como más probable y deseable como base para una licitación del sistema bajo un CAMEP.

El sistema es implementado en la misma zona considerada en el escenario anterior, teniendo en cuenta como mínimo la cobertura del polígono de 26,4 km², con características similares a las presentadas anteriormente.

En este escenario, se considera que el operador del sistema adoptaría una tarifa que resulte en un pago promedio de COP 2.010 por viaje por los usuarios, un poco más alta que la considerada en el escenario anterior. Esta tarifa coincide con la obtenida por el modelo econométrico con base en “benchmarks” de América Latina, conforme se presenta en el Informe Financiero. Por esta razón, se considera que esta tarifa es factible, aunque según el modelo de elección discreta habría una reducción de demanda.

La figura a continuación presenta la curva tarifa-demanda resultante del modelo de elección discreta. Esta curva permite observar la proyección de demanda al considerar variaciones en la tarifa. La tarifa promedio es resultado del modelo, que considera un monto fijo por desbloqueo de la bicicleta y una variable por minuto. Se tiene que la ecuación de la curva logarítmica que approxima a los resultados del modelo, es:

\[y = -14.272 \times \ln(x) + 120.596 \]

en qué \(y \) representa el número de viajes diarios y \(x \) la tarifa promedio del modelo

La manera como se ha evaluado en el modelo, la tarifa de COP 2.010 por viaje promedio es resultado de una tarifa al usuario que cuesta COP 750 por el desbloqueo y un valor adicional de COP 140 por minuto de viaje, que resulta en tarifas más bajas para viajes cortos.

La utilización de una tarifa promedio por viaje de COP 2.010 resulta en una demanda de 12.190 viajes por día. Para una tarifa promedio más alta, de COP 2.690, la demanda resultante es de 8.000 viajes por día. Estos resultados son indicados también en la siguiente tabla a continuación.
Figura 2.62: Proyección de viajes por día según la tarifa promedio

Fuente: Elaboración propia

1. Nota: la tarifa promedio es resultado del modelo, en que se considera un valor base de COP 750 por el desbloqueo y un valor adicional por minuto con la bicicleta. Es decir, considera que personas con viaje más corto pagan menos, y personas con viajes más largo pagan más.

Tabla 2.37: Estimación de demanda y parámetros para zona de operación de 26,4 km²

<table>
<thead>
<tr>
<th>Tarifa promedio por viaje</th>
<th>Total de viajes estimados SBC (día medio)</th>
<th>Población (según expansión de EODH2019)</th>
<th>Viajes / 1.000 hab./día</th>
<th>Número de bicicletas</th>
<th>Densidad de bicicletas (bici/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5,3 viajes/bici/día</td>
<td>4 viajes/bici/día</td>
</tr>
<tr>
<td>2.010</td>
<td>12.190</td>
<td>310.000</td>
<td>39</td>
<td>2.300</td>
<td>3.048</td>
</tr>
<tr>
<td>2.690</td>
<td>8.000</td>
<td>310.000</td>
<td>26</td>
<td>1.509</td>
<td>2.000</td>
</tr>
</tbody>
</table>

Fuente: Elaborado por LOGIT

En el escenario propuesto, se considera que el operador lograría obtener 5,3 viajes por bicicleta por día. Desde el punto de vista financiero, considerar menos viajes por bicicletas es una premisa más conservadora, que resulta, sin embargo en menos ingresos tarifarios para cada bicicleta. Con el objetivo de ser más conservadores, no obstante lo anterior, se adopta este valor como referencia. Para la demanda estimada de 12.190 viajes/día y este número de viajes por bicicleta por día, se estima que son necesarias **2.300 bicicletas**. Por lo tanto, se debería considerar esta flota como mínimo para la licitación.

Además, con este número de bicicletas, se tendría 87 bicicletas por kilómetro cuadrado de zona de operación, lo que representa una buena densidad en comparación con otros sistemas de bicicletas compartidas en América Latina.
2.3.6.2 Escenario alternativo para Permisos

De la misma manera que en el caso del escenario CAMEP, después de la revisión de los primeros escenarios propuestos con el equipo técnico de la Secretaría Distrital de Movilidad (SDM), se ha definido un escenario alternativo a considerar en la evaluación. Este ítem presenta el escenario considerado como más probable y deseable como base para autorizar operadores a operar a través de Permisos.

En el caso de autorización de empresas a operar bajo Permisos, se considera que la demanda potencial a atender con las bicicletas compartidas es la misma. No obstante, se ha observado que existe una potencial dificultad en el cierre financiero con las tarifas promedio por viaje presentada en los escenarios anteriores. Además, los operadores bajo permisos podrían encontrar más dificultad en la obtención de ingresos no tarifarios para sostener el sistema. Por esta razón, se considera que sería probable que los operadores adoptaran niveles tarifarios más altos para buscar un equilibrio financiero.

Para buscar un escenario más factible financieramente, se ha definido un valor de tarifa promedio de 2.690 COP por viaje. En el modelo de elección discreta, esta tarifa representa un pago de 750 COP por el desbloqueo de la bicicleta y 215 COP por minuto. Es un valor inferior al del operador que está operando actualmente el sistema MUVO, que tiene las tarifas de COP 1.500 y COP 250, respectivamente.

Para esta tarifa promedio, se ha evaluado con el modelo de elección discreta que la demanda potencial que pueden alcanzar es de 8.000 viajes por día. No obstante, es importante resaltar que tarifas más altas aumentan la incertidumbre en la estimación de la demanda. O sea, factores culturales o comportamentales podrían afectar esta estimación, y aumentar el riesgo de demanda para los operadores.

Para estimar el número de bicicletas necesarias para atender esta demanda, se ha utilizado una productividad de 4 viajes por bicicleta por día, de acuerdo con lo que se establece en el ítem sobre este parámetro (2.3.1.3 – Viajes/bici/día para permisos). Sin embargo, es importante destacar también que este nivel de viajes por bicicletas no es garantizado. Depende del operador ofrecer un buen servicio y garantizar una buena disponibilidad de las bicicletas cuando y donde los usuarios las necesiten.

Con la demanda potencial y la productividad estimada, se estima que la flota necesaria en el sistema es de 2.000 bicicletas. Además, con esta flota, en la zona de operación propuesta, se tendría densidad de 75 bicicletas, que es considerada adecuada para un buen servicio.

En el Informe Financiero se evalúa el escenario en que solamente un operador opera este sistema. Es decir, un operador es el responsable por las 2.000 bicicletas en la zona de operación. Esta premisa tiene el objetivo de evaluar la factibilidad del negocio en el caso más favorable. Escenarios alternativos fueron consignados en el Modelo Financiero en Excel.

En la práctica, con la implementación de este escenario, el Distrito debería tener una convocatoria y distribuir los permisos entre las empresas interesadas que cumplen con los requisitos adecuados. Es decir, si hay más empresas interesadas, dependiendo de cuantas bicicletas propongan operar y la fórmula utilizada para asignación de los permisos, se podría tener empresas y unidades de negocio menores con algunos resultados desfavorables:
• costos fijos más altos por bicicleta operativa, resultando en más dificultades para el cierre financiero;
• menor cantidad de bicicleta por empresa, resultando en que cada sistema menos densidad de bicicletas en la zona y los usuarios necesitan caminar más para encontrar una; o que cada empresa esté más enfocada en una subregión específica;

No obstante, como se ha discutido anteriormente, el negocio de bicicletas “dockless” (sin anclaje) es un sistema nuevo y dinámico, de manera que no hay reglas definidas claramente para su especificación.

Para la implementación de este escenario, únicamente con permisos en la ciudad, se recomienda:

• Definir una flota inicial conservadora y autorizar a las empresas interesadas, pudiendo ser las 2.000 bicicletas propuestas en este escenario si no hay un CAMEP en paralelo que pudiera ser afectado;
• monitorear la demanda, calidad de servicio y uso adecuado del espacio público;
• si hay condiciones favorables y los operadores tienen interés en expandir sus flotas, autorizar un número mayor de bicicletas.

2.3.6.3 Escenario alternativo Combinado (permisos simultáneos a un CAMEP)

Para el caso en que se implementen permisos y una operación bajo CAMEP, las recomendaciones son las mismas presentadas en el Informe Técnico ítem 2.3.5.3 – Combinado.

De la misma manera que en el caso de los nuevos escenarios de CAMEP y Permisos presentados en los ítems 2.3.6.1 y 2.3.6.2, se ha definido en conjunto con la Secretaría Distrital de Movilidad (SDM), entre varios escenarios discutidos a lo largo del estudio, un escenario alternativo para evaluación.

El escenario evaluado es el presentado como Escenario Alternativo CAMEP en el ítem 2.3.6.1 de este informe , con 2.300 bicicletas, en que ese número mínimo de bicicletas se reduce en 10%. Esta reducción significa que en CAMEP el número mínimo de bicicletas sería de 2.070 y que la demanda estimada sería 10.970 viajes por día.

Establecer una flota máxima para los permisos que es 10% de la de CAMEP, resultando en este caso en 230 bicicletas. Sin embargo, esta flota es demasiado pequeña para la operación de un sistema de bicicletas compartidas en la zona propuesta, y probablemente poco interesante para los operadores. Sería en caso de la implementación de permisos para localidades específicas o servicios específicos.

Este escenario es evaluado en el Informe de Modelo Financiero, permitiendo evaluar los impactos de la reducción de la flota en los resultados financieros del negocio.

La discusión sobre los efectos de la operación de los 2 sistemas en paralelo se presenta en el ítem 2.3.5.3 – Combinado (permisos simultáneos a un CAMEP) – y también en el Informe de Modelo de Negocios y Financiero en el ítem 2.3 - Análisis de Riesgos.
2.4 Especificaciones técnicas

En este capítulo se presentan recomendaciones relacionadas con el estacionamiento de las bicicletas compartidas, de las bicicletas y de los datos a compartir, que deberán orientarán los actos administrativos para otorgamiento de permisos y pliegos para la licitación, dependiendo del caso. Las recomendaciones se presentan también con base en los Informe de Adaptación al Cambio Climático e Informe de Género y “No Dejar a Nadie Atrás”.

2.4.1 Estacionamiento de bicicletas sin anclaje (permisos)

Los sistemas privados de préstamo de bicicletas sin anclaje generan oportunidades para mejorar la sostenibilidad y oferta de transporte urbano, pero también presentan retos en cuanto al uso del espacio público. En este sentido, la asignación de cajones para disponer vehículos en el marco de explotación de espacio público responde al interés de regular el uso del espacio público.

Sin embargo, es importante anotar que obligar el uso de cajones específicos puede reducir la efectividad de los sistemas sin anclaje al hacer menos flexible su prestación del servicio y, así, más costosa su operación en general y menos probable su sostenibilidad financiera y satisfacción de usuarios. Esto se suma a la dificultad de adecuar cajones con suficiente densidad para prestar un buen servicio al usuario.

En el marco de este proyecto, en la planeación del sistema por implementar bajo permisos se ha buscado definir un modelo de estacionamiento para bicicletas sin anclaje. Este proceso se resume en este documento; sin embargo, para mayor detalle se hace referencia a los documentos previos entregados a la SDM:

1. Revisión preliminar modelo de cajones (marzo 2020)
2. Revisión y avance modelo de cajones (abril 2020)
3. Propuesta de proceso para la ubicación de cajones (mayo 2020)

A continuación, se presentarán los principales avances y recomendaciones que resultaron de este proceso de revisión.

2.4.1.1 Modelo actual

El 5 agosto del 2019 la Secretaría Distrital de Movilidad de Bogotá expidió la Circular 011 – 2019 con la que autorizó el aprovechamiento del espacio público para el alquiler de patinetas y determinó una zona autorizada para su uso en la ciudad. Esta zona de uso, comprendida entre las calles 45 y 134, y la avenida Caracas (luego autopista Norte) y la carrera 7ª, corresponde a la zona de mayor demanda potencial para este servicio. Dentro de esta zona, también se determinaron dos zonas diferentes para el estacionamiento de las patinetas: un área demarcada y un área no demarcada (Secretaría Distrital de Movilidad de Bogotá, 2019).

La demarcación de las dos zonas (ver Ilustración 2) responde a las características en cuanto al uso de suelo, donde la zona con cajones tiene predominancia de actividades de comercio y servicios y la zona sin cajones, de uso residencial. Se destaca que la demarcación no tiene en cuenta el uso de la calle como determinante de la necesidad de tener cajones.
Área demarcada: Zona con cajones obligatorios
El área demarcada cuenta con 5,7 km² y tiene 86 cajones de estacionamiento señalizados en la malla vial. Según la determinación normativa, los cajones deben tener una capacidad de 30 patinetas por cajón y una cobertura mínima de 15 cajones por cada km². La Secretaría Distrital de Movilidad al establecer una localización específica de estos cajones buscó crear un espacio regulado de parqueo de patinetas y así evitar que estas creen obstrucciones en las aceras y otros espacios públicos.

Área no demarcada: Zona sin cajones obligatorios
El área no demarcada no tiene cajones de estacionamiento por lo que en esta zona es permitido estacionar las patinetas sobre la malla vial local e intermedia. En esta zona, las patinetas deben ubicarse en fila única, una detrás de la otra y paralelas al bordillo del andén y en ningún caso podrán obstaculizar entradas y salidas vehiculares, rampas de acceso, paraderos escolares, hidrantes, hospitales, bancos, embajadas ni instituciones militares (Secretaría Distrital de Movilidad de Bogotá, 2019).
Ubicación de cajones

La distribución de los cajones dentro del área demarcada responde al factor de cobertura de 15 cajones por cada km², dando un total de 86 cajones en el espacio demarcado. Después de haber establecido este número, se procede a ubicar cada cajón dentro de la zona. Para ello, se hizo un análisis de la distribución porcentual de viajes potenciales (demanda) dentro del área de operación y de los segmentos viales disponibles (espacios potenciales en la malla vial).

En el análisis de segmentos viales disponibles, se tuvieron en cuenta las condiciones generales de las calles que pueden restringir la posibilidad de estacionamiento en un sector o en un tramo:

- La existencia de equipamientos dotacionales de salud, educación, recreación, cultura, seguridad, justicia, entre otros, que aumentan la afluencia de peatones.
- La geometría del segmento vial y su señalización existente.
- Antecedentes judiciales y técnicos vigentes sobre el segmento.
- La distancia mínima requerida para garantizar las condiciones de visibilidad y la continuidad del flujo vehicular, de forma tal que el conductor pueda detener el vehículo ante la presencia de una obstrucción (peatón), o maniobrar sin detenerse y evadir la obstrucción, lo mismo que efectuar adelantamientos.
- La aproximación a intersecciones semaforizadas.
- Franja de seguridad para el uso hidrantes por parte del cuerpo de bomberos.
- Distancia libre para el acceso a predios.
- Respeto y acople a las implementaciones existentes de “Tráfico calmado”.
- Clasificación de la vía; arteria, intermedia, local o peatonalizada
- La existencia de espacios con morfología de bahía anexos a la vía.
- Vías con uso de volteadero, revisando radio de giro de manera que se garantice el giro de los vehículos de emergencia en una sola maniobra.
- Si cuenta con número de Registro Único Del Patrimonio Inmobiliario (RUPI) y el uso asignado en este si ha do declarado patrimonio inmobiliario.
- Estado de la vía (Pavimentación, andén, etc.).
- El componente urbanístico: UPZ y uso del suelo.
- La circulación de rutas de transporte público colectivo asociadas al sistema integrado de transporte público (SITP) y masivo (rutas alimentadoras adscritas al sistema de transporte masivo Transmilenio), así como la presencia de zonas escolares, zonas amarillas, zonas de cargue y descargue, paraderos, entre otros.

Diseño de cajón
En el proceso de diseño de los cajones del sistema de patinetas, se definieron las dimensiones básicas de las patinetas, para luego evaluar los siguientes escenarios:

Convivencia entre el SIE y patineta: Este escenario plantea la convivencia del sistema con un futuro sistema que hará uso de la infraestructura vial para el parqueo en vía (el Sistema Inteligente de Estacionamiento - SIE). Esto implica que el cajón debe tener las mismas dimensiones de ancho establecidas por el SIE, precisamente, 3.0 metros de ancho por 5.5 a 6 metros de largo.

Convivencia entre patineta y bicicleta compartida: Para poder integrar los servicios de patineta y bicicleta compartida, se propusieron cajones de 2.7 o 2.4 de ancho, dejando el espacio de circulación peatonal a lo mínimo requerido y liberando más espacio vial.

Figura 2.65: Ejemplos de áreas demarcada y no demarcada dentro de la zona de operación

2.4.1.2 Lineamientos para ajuste del modelo acordadas
Luego de la revisión del modelo actual, se recomendaron las siguientes líneas de acción para el ajuste del modelo de cajones:

A. Vinculación de los servicios de micromovilidad a los procesos más amplios de cobro por uso de espacio público.
B. Evaluar la flexibilización de las normas de estacionamiento, en determinadas zonas y con mayor control por parte de la autoridad pública, los operadores y los usuarios.
C. Combinar el tratamiento patineta y bicicleta compartida, por lo mínimo utilizando los mismos cajones y hasta juntando los permisos para generar un solo marco de operación.

D. Evaluar cambios en el proceso de planeación, para lograr una mejor selección de espacios, en particular para responder a la demanda localizada.

E. Mejora de comunicación y procesos de validación, con los operadores y los usuarios de los servicios.

F. Evaluar cambios en el tamaño de cajones para generar mayor densidad en ciertas zonas de la ciudad, aprovechando de segmentos viales irregulares.

Estos lineamientos fueron discutidos con la SDM en abril 2020 y se acordaron varios puntos de ajuste, los cuales se resumen en las recomendaciones a continuación. Primero, se presentan algunas consideraciones adicionales por lineamiento:

Consideraciones particulares por lineamiento

Evaluar cambios en el proceso de planeación, para lograr una mejor selección de espacios, en particular para responder a la demanda localizada (Lineamiento D)

- Urge definir claramente los criterios positivos (no de restricciones, estos también tienen que ser claros, pero son más importantes para el proceso interno) utilizados para ubicar cajones y espacios de estacionamiento de bicicletas y patinetas, revisando los establecidos para el proceso de patinetas. Justificar la ubicación de cada cajón en un documento técnico que se comparte con los operadores.
- Incluir dentro de estos criterios la cercanía al transporte masivo, para fortalecer la intermodalidad en los casos en que sea relevante.
- Generar mayor accesibilidad a pie, revisar cubrimiento de cajones actuales por distancia de caminata y no por radio de influencia sin obstáculos.
- Priorizar acceso a ciclorrutas y vías de bajo estrés, tener en cuenta obstáculos como separadores, puentes y vías grandes.

Mejora de comunicación y procesos de validación, con los operadores y los usuarios de los servicios. (Lineamiento E)

- Enviar información detallada y actualizada a los operadores de patinetas y bicicletas compartidas, en diferentes formatos (.pdf y .doc, pero también capas geográficas en XML o SHP). Debe incluir direcciones exactas, dimensiones (capacidad), etc.
- Hacer reuniones frecuentes con operadores para evaluar operación por temas clave (control de malparqueo, regulación, ubicación de cajones, calidad de vehículos, etc.)
- Operadores deben enviar la info en formato MDS agency para confirmar cómo están operando, esto debería quedar confirmado en los permisos de operación, siendo para esto necesario establecer un reglamento que lo permita hacer.

Densidad y ubicación de cajones.

La densidad (cantidad y espacio total disponible) de cajones debe responder a la demanda estimada en la zona. Asimismo, se debe reconocer el rol central del usuario en el uso de los cajones, es decir, los cajones deben orientarse a ser lo más útil posible para el usuario. Se recomienda:
Analizar demanda a nivel local, no mayor a 1km2. Cajones a mayor distancia de 300m del destino final no serán utilizados por el usuario.

Priorizar la ubicación cercana a atractores o generadores de viajes, como estaciones de transporte masivo, hitos urbanos y zonas de alta densidad.

2.4.1.3 Recomendaciones

Con base en las revisiones realizadas y las discusiones con el equipo de la SDM, se han definido las siguientes recomendaciones para el modelo de cajones:

Recomendaciones generales:

i. Permitir que los patinetas y bicicletas compartidas (Permisos) utilicen los mismos cajones (siempre y cuando estén dentro del área de operación del sistema) y se determinará un uso general de “micromovilidad” para estos espacios.\(^{13}\)

ii. Unificar el tratamiento de estacionamiento en toda la zona de operación y por ello no tener diferentes áreas sin y con cajones. Esto implica flexibilizar el estacionamiento permitido fuera de cajones, de manera que se permita estacionar bicicletas y patinetas siempre y cuando no obstruyan la circulación peatonal (se siguen las reglas ya establecidas para la zona sin cajones). Esta aproximación implica tener reglas claras y explícitas para los usuarios. Se podría evaluar la posibilidad de generar zonas de restricción de parqueo alrededor de los cajones, pero esto no es estrictamente necesario, siempre y cuando esté claro dónde está el cajón y que sea fácil su uso.

iii. Se flexibiliza el ancho y tamaño del cajón para generar mayor densidad en zonas de alta demanda (ver recomendaciones de diseño de cajón abajo).

iv. Mantener los cajones existentes del sistema de patinetas donde no ha habido conflictos con otras funciones de la política de movilidad.

v. Implementar cajones donde hay necesidad por características del espacio público y en función de las necesidades del usuario (ver sección siguiente sobre el proceso de ubicación de cajones).

vi. Priorizar las estaciones en caso de conflicto entre espacio disponible para cajón y estación. No permitir habilitar un cajón cerca de las estaciones (a menos de 50 metros).

Recomendaciones sobre el diseño de los cajones:

i. Reducir el tamaño de los cajones para permitir una mayor densidad de cajones en zonas de alta demanda. Esto significa no establecer un número fijo de bicicletas en un cajón y en cambio revisar cada área (ej. cada km2 o cada x manzanas), específicamente para evaluar la mejor manera de generar densidad y oferta de cajones según necesidad de espacios.

\(^{13}\) Esto implica rediseñar los cajones ya implementados, para cual se debe desarrollar una estrategia y metodología que reduce la intervención necesaria y el costo al mínimo. En particular, se debe evaluar si un rediseño es necesario, y en caso de sí, como hacerlo cambiando el mínimo posible para reducir el grado de intervención y garantizar la flexibilidad en su utilización.
ii. No establecer diseños fijos y modulares, sino que normas flexibles que se pueden ajustar según la sección y el espacio disponible. Por ejemplo, se podría dividir un cajón en dos, pero no exclusivamente por la mitad. Se recomienda tener en cuenta las siguientes normas generales:

 a. *Área ocupada por bicicleta respecto a patineta*. El documento técnico de patinetes (Subsecretaría de Política de Movilidad 2019, Figuras 18 y 19) da un espacio de 35cm ancho x 120cm largo (con manubrio rotado) por patinete, para un total de 0.42 m². Una bicicleta normal tiene alrededor de 60cm ancho y 180cm de largo (The Danish Cycling Federation, p.32), con manubrio rotado implica una ocupación de 42.4cm de ancho por 2m de largo (0.84 m² de área). Por ende, se puede afirmar que una bicicleta ocupa el área de dos patinetes, teniendo en cuenta que las dimensiones son diferentes y no se puede equivaler dos espacios de patineta por una de bicicleta. Es importante aclarar que las bicicletas se pueden ‘encajarse’ para reducir el área ocupado. Se anota también que, aunque las llantas se extienden más allá del manubrio, cualquier ancho adicional que esto genera no estorba el posicionamiento de otras bicicletas, siempre y cuando estén estacionados hacia el mismo lado.

 b. *Espacio peatonal necesario*. Con fines de reducir el tamaño del cajón sin afectar negativamente a la seguridad de los usuarios, se requiere definir qué espacio peatonal sería el mínimo necesario para acceder a la bicicleta en condiciones de seguridad. El manual de cicloparqueaderos danes (The Danish Cycling Federation, 2008) establece una franja de maniobra de 1.75m (en caso de parqueo perpendicular) o 1m (en caso de parqueo angular). Se recomienda mantener 1m de espacio de circulación mínimo, a ubicar entre la bicicleta y el carril vehicular. No se requiere espacio dentro del cajón mismo, solo garantizar el acceso por el costado (entre carril y bicicleta, con la bicicleta contra el bordillo). Esto también disminuye el paso por medio del cajón por vehículos como motocicletas.

 c. Por ende, se puede afirmar que bicicletas estacionadas perpendicularmente al andén necesitan entre 3.55 y 3.75 metros de ancho (1.80-2.00 de bicicleta más 1.75 de espacio peatonal/maniobra). Sin embargo, en el caso de estacionar de manera angular a 45 grados, el ancho vial ocupado por bicicleta se podría reducir a 1.40m y el espacio total a 2.40m (1.40+1.00). Espacios aún más reducidos podrían ser viables solo si se toma el riesgo de invasión del espacio peatonal (de acceso).

iii. Se recomienda no poner racks por el costo y la obra necesaria, las bicicletas deben ser autoaseguradas. Además, los racks pueden generar estacionamiento por bicicletas u otros tipos de vehículos que no hacen parte del sistema.

iv. Se recomienda un cambio de colores de señalización en espacios internos del cajón, con fin de generar mayor reconocimiento de la función de la señalización y para distinguirla de otros tipos de señalización (como tráfico calmado). Este color puede ser azul para alinearse con la ciclo-infraestructura en la ciudad.

v. Se recomienda no poner señalización de espacios en el cajón (indicar espacios individuales). Esto no mejora las prácticas de estacionamiento observado. En cambio, se puede indicar claramente el espacio ‘peatonal’ de acceso a los vehículos y el espacio de estacionamiento. Esto se puede lograr con colores (azul para delimitar el espacio de estacionamiento, blanco para peatonal) y con pictogramas en el piso.
Recomendaciones sobre el proceso de ubicación de los cajones:

i. Se recomienda que la SDM lidere el proceso de ubicación y señalización de los cajones, con el objetivo de controlar la selección de los espacios y evitar la implementación en sitios menos favorables o posibles conflictos al presentarse varios operadores (también aplica para operadores de patinetas). Se considera que un operador privado no tiene un fuerte incentivo para realizar el proceso que se describe a continuación de manera, y que estos problemas aumentarían al presentarse varios operadores. Esto significa que los operadores deben pagar la SDM por la realización de las labores de señalización.

ii. No se recomienda utilizar una distancia mínima o máxima entre cajones de la misma manera que se hace para estaciones fijas. Por ser vehículos sin anclaje el uso del espacio depende del usuario (si bien hay reglas o no) y por ende el proceso de ubicación de cajones debe partir de la demanda de estacionamiento y no tiene el objetivo de crear una ‘malla’ de cobertura.

iii. En este sentido, el proceso de ubicación de cajones nuevos debe estar orientado a proveer estacionamiento en puntos específicos que resuelvan conflictos de espacio público puntuales, de la mano con la flexibilización del estacionamiento en general.

iv. Para ello, se recomienda hacer análisis de ubicación de cajones teniendo una nueva precisión de criterios (incluyendo criterios nuevos, ver tabla abajo) y con selección a nivel local, tomando zonas urbanas no mayores a 10x10 cuadras y delineadas por barreras urbanas como vías grandes o caños.

v. Se debe justificar la ubicación de cada cajón en una ficha técnica que esté disponible públicamente y que indique su capacidad de diseño y los criterios por los cuales se escogió el sitio.

vi. Antes de adoptar el nuevo proceso, se recomienda realizar ejercicios prácticos utilizando capas SIG y eventualmente visitas de campo en zonas específicas para evaluar el funcionamiento y los resultados y con base en ello hacer precisiones al proceso. CFF está dispuesto a acompañar a la SDM en estos ejercicios prácticos, en particular en el diseño del ejercicio y la evaluación de los resultados obtenidos.

vii. En caso de permitir implementación de cajones y estaciones en plazas, andenes y parques, se considerarán todos los criterios positivos indicados en la tabla abajo; en cuanto a las restricciones se recomienda realizar una revisión cercana de la normativa ajustada.

Para mayor detalle, se recomienda consultar el documento ‘Propuesta de proceso para la ubicación de cajones’.
<table>
<thead>
<tr>
<th>#</th>
<th>Estatus</th>
<th>Criterio</th>
<th>Procedimiento</th>
<th>Datos de soporte</th>
<th>Procedimiento recomendado</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nuevo (recomendación CFF)</td>
<td>Ciclo-infraestructura existente, potencial o proyectada</td>
<td>Criterio positivo</td>
<td>Malla vial</td>
<td>Priorizar cajones en cercanía a ciclo-infraestructura existente o proyectada</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Geometría vial</td>
<td>Evaluar si el cajón cuenta con amplios accesos peatonales, considerando barreras o accesos entre cajón y zona aledaña.</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Accesibilidad a pie</td>
<td></td>
<td>Malla vial</td>
<td>Priorizar cajones en cercanía a estaciones del transporte público masivo, preferiblemente en la línea de tránsito peatonal de los usuarios que llegan a usar o salen del sistema</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Cercanía a transporte público masivo (Transmilenio)</td>
<td></td>
<td>Malla vial</td>
<td>Priorizar cajones en cercanía a estaciones del transporte público masivo, preferiblemente en la línea de tránsito peatonal de los usuarios que llegan a usar o salen del sistema</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Mayor uso (flujo) de vehículos de micromovilidad</td>
<td>Datos de uso (de SDM u operadores)</td>
<td>Los datos de operadores (MDS, a futuro) y de SDM (conteos de varias fuentes, ya existentes) sobre flujo de usuarios en áreas específicas - de todos los vehículos irrespecriva de si son de alquiler o no - ayudan a definir las áreas donde hay mayor concentración de usuarios y por ende la necesidad de ubicar más cajones.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Mayor densidad de vehículos de micromovilidad estacionados</td>
<td>Datos de uso (de SDM u operadores)</td>
<td>Los datos de operadores (MDS) sobre vehículos detenidos ayudan a definir las áreas donde hay mayor concentración de usuarios y por ende la necesidad de ubicar más cajones</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Solicitudes de usuarios</td>
<td>Canales de comunicación SDM (PQR)</td>
<td>Los usuarios pueden solicitar espacios para estacionamiento de vehículos de micromovilidad, y se usa como insumo para definir nuevos espacios.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Áreas de mayor densidad, uso de suelo mixto y/o viajes cortos</td>
<td>Datos geográficos de Bogotá</td>
<td>Criterio combinado de varias fuentes (podrían ser varios criterios separados) donde mayor densidad, mixtidad del uso del suelo y ubicación de orígenes y destinos de viajes cortos son los lugares a priorizar.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Existeente (DTS patinetes)</td>
<td>La existencia de equipamientos dotacionales de salud, educación, recreación, cultura, seguridad, justicia, entre otros, que aumentan la afluencia de peatones.</td>
<td>No está claro, podría ser un criterio positivo</td>
<td>Equipamientos</td>
<td>La presencia de equipamientos que atraen viajes debe favorecer el emplazamiento de cajones, especialmente donde hay mucho tráfico peatonal</td>
</tr>
<tr>
<td>#</td>
<td>Estatus</td>
<td>Criterio</td>
<td>Procedimiento</td>
<td>Datos de soporte</td>
<td>Procedimiento recomendado</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Respeto y acople a las implementaciones existentes de “Tráfico calmado”.</td>
<td>No está claro, podría ser un criterio positivo</td>
<td>Geometría vial</td>
<td>Se considera oportuno evaluar la posibilidad de integrar el emplazamiento de cajones con las medidas de calzado de tráfico, en particular las reducciones de carril antes de cruce.</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>Clasificación de la vía; arteria, intermedia, local o peatonalizada</td>
<td>Dependiendo, se recomienda especificar</td>
<td>Jerarquización vial</td>
<td>Debe aclararse cual tipología de vía implica la restricción. Se recomienda evitar emplazamiento en arterias y favorecer vías locales</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>Estado de la vía (Pavimentación, andén, etc.).</td>
<td>No está claro, podría ser un criterio que restringe, pero algo que pueda priorizar mantenimiento</td>
<td>Mantenimiento vial</td>
<td>Revisión en campo antes de emplazar. Coordinar señalización con mantenimiento programado</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>El componente urbanístico: UPZ y uso del suelo.</td>
<td>No está claro</td>
<td>Uso del suelo</td>
<td>Se recomienda adaptar y confliuir con criterio #7</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>La geometría del segmento vial y su señalización existente.</td>
<td>Dependiendo, se recomienda especificar</td>
<td>Geometría vial</td>
<td>Estas características por definir si se cuenta con el espacio disponible, son fundamentales para el diseño y la ubicación final del cajón. Sin embargo, no es un claro criterio, se podría ajustar para especificar 'Ancho vial suficiente disponible'</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>Antecedentes judiciales y técnicos vigentes sobre el segmento.</td>
<td>Restringiendo</td>
<td>Antecedentes judiciales y técnicos vigentes sobre el segmento</td>
<td>Mantener</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>La distancia mínima requerida para garantizar las condiciones de visibilidad y la continuidad del flujo vehicular, de forma tal que el conductor pueda detener el vehículo ante la presencia de una obstrucción (peatón), o maniobrar sin detenerse y evadir la</td>
<td>Geometría vial</td>
<td>No se considera claro el criterio, específicamente el concepto de 'distancia mínima' y 'maniobrar sin detenerse'</td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Estatus</td>
<td>Criterio</td>
<td>Procedimiento</td>
<td>Datos de soporte</td>
<td>Procedimiento recomendado</td>
</tr>
<tr>
<td>----</td>
<td>---------</td>
<td>---</td>
<td>---------------</td>
<td>-----------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>obstrucción, lo mismo que efectuar adelantamientos.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>La aproximación a intersecciones semaforizadas.</td>
<td>Semaforización</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Fraja de seguridad para el uso hidrantes por parte del cuerpo de bomberos.</td>
<td>Ubicación de hidrantes</td>
<td></td>
<td>Mantener</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>Distancia libre para el acceso a predios.</td>
<td>Verificación en campo</td>
<td></td>
<td>Mantener</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>La existencia de espacios con morfología de bahía anexos a la vía.</td>
<td>Geometría vial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Vías con uso de volteadero, revisando radio de giro de manera que se garantice el giro de los vehículos de emergencia en una sola maniobra.</td>
<td>Malla vial</td>
<td></td>
<td>Mantener</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>Si cuenta con número de Registro Único Del Patrimonio Inmobiliario (RUPI) y el uso asignado en este si ha do declarado patrimonio inmobiliario.</td>
<td>Patrimonio</td>
<td></td>
<td>Mantener</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>La circulación de rutas de transporte público colectivo asociadas al sistema integrado de transporte público (SITP) y masivo (rutas alimentadoras adscritas al sistema de transporte masivo Transmilenio), así como la</td>
<td>Malla vial</td>
<td></td>
<td>Mantener</td>
</tr>
<tr>
<td>#</td>
<td>Estatus</td>
<td>Criterio</td>
<td>Procedimiento</td>
<td>Datos de soporte</td>
<td>Procedimiento recomendado</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>--</td>
<td>---------------</td>
<td>-----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>presencia de zonas escolares, zonas amarillas, zonas de cargue y descargue, paraderos, entre otros.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 2.38: Revisión de criterios para la implementación de cajones.
2.4.2 Estaciones de bicicletas con anclaje (sistema CAMEP)

La elección de dónde y cómo se ubican las estaciones es fundamental para garantizar el nivel de uso y rotación del sistema. Las estaciones deben estar localizadas de manera que sean visibles para los usuarios y que a su vez permitan que sea más fácil la operación dentro del área de servicio determinada. El diseño de las estaciones debe tener en cuenta las condiciones del entorno urbano y las particularidades de cada lugar en el que se vayan a ubicar.

En la ciudad de Bogotá es preciso tener en cuenta, dependiendo de la tecnología del operador, que pueden presentarse algunos requerimientos de espacio específicos. Por ejemplo, algunas tecnologías necesitan la instalación de un panel solar y otras no. Esto no marca una gran diferencia respecto a las necesidades de espacio, pero si es necesario tenerlas presente en el momento de la instalación. Por esto, en el momento de especificar las características requeridas para implementación de estaciones es necesario tomar en cuenta esta diversidad para no generar barreras de entrada a operadores.

Este documento tiene como fin realizar recomendaciones generales para la ubicación de las estaciones y recomendaciones particulares según las diferentes tipologías que puede tener el sistema.

La revisión del procedimiento para implantación de estaciones, para fines de informar los potenciales interesados en los pliegos de la licitación, se revisarán conjuntamente en los pasos siguientes.

2.4.2.1 Tipologías de ubicaciones

En general proponen 4 (cuatro) tipo diferentes de tipologías de ubicación para las estaciones: en calzada; en andén; en parques o plazas; y en separador. A continuación, se detalla cada una de ellas.

2.4.2.1.1 Tipologías en calzada

Para las estaciones ubicadas en la calzada vehicular es necesario considerar que se debe permitir liberar la bicicleta hacia la vía. Para que dicha maniobra pueda llevarse a cabo con seguridad y el usuario pueda realizar cómodamente los ajustes necesarios antes de iniciar el viaje, se recomienda garantizar una franja adicional de mínimo 0,70 m.

El ancho de la estación debe definirse teniendo en cuenta el espacio ocupado por la bicicleta y el módulo de anclaje que dependerán de la tecnología del operador.

Se recomienda instalar objetos de protección verticales que avisen a los conductores de la presencia de la estación y que proteja a las estaciones de posibles impactos. Se aconseja que la altura de los elementos sea entre los 50 y los 70 cm de alto y que se incluyan elementos reflectivos para garantizar que la estación sea vista en la noche por quien conduce un vehículo en movimiento.
En caso que los tótems o punto de interacción de las estaciones requieran de interacción con los usuarios se recomienda que se instalen en la mitad del espacio destinado para la estación de modo de facilitar el acceso, garantizar la seguridad y disminuir los tiempos requeridos para retirar la bicicleta.

Por último, para esta tipología es importante revisar si existen redes de servicios públicos en la zona, con el fin de evitar el bloqueo de las cajas de inspección que se encuentren en el sector.

Figura 2.66: Recomendaciones generales – Estación sobre calzada

Opción cercana a la esquina

La ubicación de la estación debe hacerse a 5.00 m de la intersección para garantizar la seguridad de los ciclistas que salen de la estación. Esta tipología es recomendada en vías unidireccionales que permitan al ciclista acceder a ella de manera más fácil y segura, evitando que realicen trayectos en contravía.
Figura 2.67: Ubicación en calzada cerca de una esquina

Opción en zona de estacionamiento

Si la ubicación de la estación es en la calzada o en lugares donde se estacionan vehículos, ya sea de manera regulada o permitida, se debe tener en cuenta la disposición de elementos que avisen a los conductores de su presencia, se recomienda dejar mínimo 1,00 m de distancia entre la estación y el espacio para los vehículos.
2.4.2.1.2 Tipologías en andén
La ubicación de una estación en andén debe respetar el espacio destinado para la circulación peatonal por lo que se recomienda que se implemente donde no interfiera con la misma, por ejemplo, en la franja de amoblamiento. La bicicleta deberá permitir liberarse hacia el andén, por lo que se recomienda dejar un espacio adicional a la estación para realizar esta maniobra de como mínimo 2,00 m y respetar un mínimo de 0.80 m de distancia con respecto a la línea podo táctil. La ubicación de la estación en andén puede estar también en el antejardín en caso de que éste se encuentre disponible.
La franja de amoblamiento corresponde al espacio destinado para la ubicación de elementos como bancas, basureros, luminarias o zonas verdes en los andenes más anchos.

Para esta tipología se debe tener en cuenta el mobiliario existente. Cuando éste interfiera en la ubicación de la estación, se deberá revisar si es necesario retirar o reubicar estos elementos.

Para los postes y luminarias se deberá solicitar el acompañamiento de la empresa prestadora del servicio teniendo en cuenta que los costos de la reubicación de estos elementos pueden llegar a ser muy altos. Se recomienda revisar las condiciones de iluminación de la estación para verificar si es necesaria la instalación de elementos adicionales.

También en esta tipología se debe prestar especial atención en garantizar que no se obstaculice el ingreso a los predios existentes.

Es preciso recordar que los árboles son parte del patrimonio de las comunidades y de vital importancia para la ciudad. Se recomienda tener en cuenta esto al definir el sitio donde se va a instalar la estación, para afectar la menor cantidad de árboles posible. Se debe buscar localizar la estación en un espacio donde no se requiera la tala de árboles, o la intervención de raíces, para esto se puede modificar el diseño de la estación manteniendo las distancias mínimas para la circulación de los peatones y ciclistas y respetando la separación mínima a los individuos arbóreos. Cuando sea necesario el trasplante o tala de algún árbol, se deben tener en cuenta los permisos
necesarios y los tiempos que conllevan. También es importante tener en consideración que cuando se requiera de una obra física en zonas verdes o cerca de árboles, es muy probable que se encuentren las raíces de estos. En estos casos, se debe dejar por lo menos 2.00 metros de distancia desde el tronco del árbol.

Figura 2.70: Ubicación en zona de amoblamiento

Opción en antejardín

Esta es la menos recomendable de todas las opciones. En los casos en que sea necesario ocupar estos espacios, sobre todo en edificios públicos, se deben revisar con anticipación los registros catastrales para definir la propiedad del predio. Se recomienda acercarse al responsable del espacio y coordinar en conjunto la instalación. Puede ocurrir que el edificio esté contemplando remodelaciones o ampliaciones que puedan afectar el funcionamiento de la estación a futuro.

Al elegir la mejor ubicación se debe evitar que la misma pueda llegar a quedar cerrada en los momentos en los que el edificio no esté abierto al público. También se debe revisar que el espacio seleccionado no esté sobre una losa de parqueaderos y se deban realizar estudios y adecuaciones mayores.

Por último, se debe revisar que no se invada el espacio de circulación peatonal y que se garantice la accesibilidad a la estación para peatones y ciclistas.
2.4.2.1.3 Tipologías en parques o plazas.
Para la ubicación de una estación en un parque o plaza se debe verificar el espacio disponible en este procurando ubicar la estación lo más cercana posible a un cruce peatonal, que permita el acceso de peatones y ciclistas a la estación. En algunos casos el espacio disponible puede ser en las zonas verdes, entre árboles o en la franja donde se ubica el amoblamiento dentro del parque o plaza.

2.4.2.1.3.1 Opción en zonas verdes entre árboles
La ubicación en zonas verdes o en superficies con materiales específicos en los pisos pueden resultar en que la instalación de la estación sea más costosa ya que se deben realizar adecuaciones mayores para su buen funcionamiento. Se recomienda entonces buscar espacios más cercanos a la calzada, que permita un mejor acceso a los peatones y ciclistas.

No se recomienda que las estaciones y los trayectos para llegar a ella sean en suelos blandos como agregados, vegetación o tierra ya que dificulta la accesibilidad con la bicicleta.
Figura 2.72: Ubicación en parque o plaza entre árboles

Opción en la franja de amoblamiento del parque
Cuando las estaciones se ubiquen en parques, plazas o plazoletas y no se requiera ubicarla entre los árboles sino en la franja de amoblamiento, se debe contemplan la circulación de las personas en estos espacios, los usos que ellas le dan y la ubicación del mobiliario del parque.

Las estaciones no deben estar ubicadas demasiado lejos de la calzada no solo para disminuir los recorridos que harán los usuarios para llegar y salir de la estación a pie o en bicicletas sino también para facilitar el balance de carga y de esta manera mejorar la operación del sistema. Es recomendable entonces primero identificar el lugar donde podría estacionar el vehículo de carga o de mantenimiento y luego revisar la ubicación de la estación con respecto a esta.
2.4.2.1.4 Tipología en separador
Aunque la ubicación en separador puede generar dificultades para el ingreso y salida de los usuarios, en algunas ocasiones sobre todo en estaciones pensadas para la integración con el transporte público puede que esta tipología sea la mejor opción.

Se deberá garantizar con lugar suficiente de circulación a los dos costados de la estación para las personas que van a ingresar a las estaciones de transporte público y para os usuarios del sistema de bicicletas.

La estación no deberá quedar muy alejada de cruces peatonales o ciclistas para evitar que las personas realicen largos trayectos sobre el separador.
2.4.2.2 Recomendaciones Generales para todas las tipologías

2.4.2.2.1 Socialización en las inmediaciones
Es importante establecer un acercamiento y comunicación con la comunidad y con los líderes de los barrios previo a la implementación de la estación para hacerlos partícipes del proceso y que puedan brindar información relevante sobre condiciones especiales que tiene cada lugar en el que se hará las intervenciones. De esta manera se fortalece el sentido de apropiación del sistema y se pueden evitar posibles errores a la hora de elegir el lugar exacto.

2.4.2.2.2 Localización estratégica
Se recomienda que la estación se localice cercana a equipamientos privados o públicos y edificios con afluencia de personas permite que se reconozca más la estación, el nombre de la estación puede coincidir con el referente más cercano esto genera apropiación y reconocimiento. Se debe evitar instalar las estaciones frente a fachadas cerradas, muros o rejas que afecten la seguridad de la estación. En el caso en que sea necesario instalarla bajo estas condiciones es recomendable la instalación de cámaras o elementos adicionales de seguridad.
2.4.2.2.3 Acceso a la estación
En términos generales, al ubicar las estaciones es importante siempre tener en cuenta por dónde llegarán y saldrán los usuarios, ya sea en bicicleta o caminando de manera que se considere primordial que la estación no entorpezca el funcionamiento del espacio en el que la misma será emplazada. Se recomienda dejar como mínimo 1.50 m libres de circulación para el desplazamiento de peatones. También se deberá ubicar la estación lo más cerca posible a la calzada para facilitar que los usuarios se incorporen fácilmente a la infraestructura vial o a la infraestructura ciclista en caso que esta exista.

También es importante considerar al momento de elección del lugar específico de implantación, el acceso de los vehículos de balanceo y de mantenimiento, el tamaño que tiene el vehículo de mayor porte y la distancia que se requiere para cargar y descargar las bicicletas.

2.4.2.2.4 Espacio requerido para la ubicación de la estación
El ancho y largo total requerido para una estación va a variar en función de la cantidad de anclajes que necesite cada estación, pero también dependerá de la distribución de los puntos de anclajes. Cuando se tiene mayor espacio a lo largo se puede implementar una estación donde la disposición de las bicicletas se realiza en ángulos que están entre los 30° y los 60°. Si en cambio se tiene mayor disponibilidad a lo ancho pero una limitante del largo de la estación, se recomienda la disposición de las bicicletas con un ángulo de 90°.

2.4.2.2.5 Condiciones de emplazamiento
Se debe tener en cuenta que la localización de la estación no obstaculice las zonas de carga y descarga, de estacionamiento, ubicación de ventas callejeras, entradas y salidas de parqueaderos, así como elementos de emergencias como zonas de ambulancias, salidas peatonales, puntos de encuentro de las empresas cercanas e hidrantes.
Se deberá garantizar la evacuación de las aguas lluvias, que los materiales sean antideslizantes y con una estética de acuerdo al lugar de la instalación especialmente en andenes, plazas y plazoletas.

Se recomienda que en la cuadra donde se instale la estación, la velocidad vehicular no sea mayor a 30 km/h. En caso de instalarse en una vía con una velocidad superior a los 40 km/h se recomienda implementar elementos de infraestructura que ayuden a la seguridad vial de los ciclistas, como ciclo carriles, ciclorrutas o elementos de pacificación del tránsito.
2.4.2.2.6 Instalación

Dependiendo de las condiciones dadas por el proveedor de los elementos de la estación, se deberá hacer el debido proceso de instalación garantizando la idoneidad de los materiales usados. Deberá garantizarse cualquier reparación a daños causados durante la instalación. Para este fin, se recomienda realizar previo a la instalación un informe sobre las condiciones preexistentes. Cuando se requiera realizar un cambio del material del piso, la actividad deberá ser previamente aprobada por la autoridad pertinente y el material nuevo deberá cumplir con las especificaciones mínimas contenidas en los manuales de espacio público de la ciudad y también
cumplir con la normativa de accesibilidad nacional NTC 5610. Las estaciones deben estar bien fijadas al piso y los materiales deben ser antideslizantes para evitar accidentes de usuarios.

La inteligencia del sistema, y los dispositivos electrónicos, independientemente de dónde se encuentren (módulo de anclaje, bicicleta o tótem), deberán estar a una altura mínima de 0,5 metros del suelo para proteger el equipamiento de posibles inundaciones. Los dispositivos electrónicos y el módulo de energía, deben estar sellados, para evitar la entrada de agua que pueda dañar los circuitos.

Todos los componentes deben estar construidos con materiales resistentes a la corrosión y a la intemperie. Como por ejemplo hierro, chapa de acero al carbono DD o acero inoxidable. Además, se deberá garantizar la evacuación de las aguas de las lluvias del interior de los equipos y estructuras.

Cuando la instalación sea en calzada se deberá reponer la señalización vial existente e instalar la requerida por la autoridad de movilidad y tránsito. Se deberá garantizar la estabilidad de la carpeta asfáltica, prestando especial atención de no generar grietas ni orificios por donde se pueda filtrar el agua.

2.4.2.2.7 Información para los usuarios
Se recomienda que las estaciones cuenten con un mapa de la distribución del total de estaciones del sistema de manera que le permita al usuario saber dónde se encuentra la estación más cercana y dónde podría entregar la bicicleta o dónde podría tomarla.

Todos los servicios, mensajes e indicaciones deberán estar como mínimo en español, ser claros y en relación con las palabras utilizadas para designar los elementos y los lugares de cada ciudad.

2.4.2.2.8 Iluminación
Se debe tener en cuenta la iluminación de la zona donde se instalará la estación y revisar la ubicación del alumbrado público. En caso de ser necesario mejorar la iluminación de la zona, se recomienda revisarlo con la empresa de servicios públicos y el área encargada en la alcaldía. También revisar la vegetación existente ya que esta puede disminuir la cantidad de luz que se proyecta en la estación. La iluminación es fundamental para el uso, para la percepción de seguridad de los usuarios y para la buena imagen del sistema.

Si la energía es suministrada por paneles solares es necesario revisar si el lugar cuenta con suficiente radiación solar para la demanda que se necesita, de lo contrario se debe tener en cuenta que será necesario conectarse a la red eléctrica de la ciudad. Se deben tener en cuenta las condiciones que la empresa de energía de la ciudad pueda tener para este suministro, es posible que sea necesario instalar un contador por cada estación y construir redes adicionales a los puntos de interconexión a la red. En caso de continuar en este camino contemplar que puede suponer trámites y costos adicionales. Los componentes eléctricos y electrónicos deben cumplir con todo el Reglamento Técnico de Instalaciones Eléctricas – RETIE y demás normas colombianas que apliquen.
2.4.2.9 Señalización
En cuanto a la señalización, además de lo mencionado para la tipología de estaciones en calzada, también es importante que exista un lenguaje que diferencie una estación de bicicleta de los parqueaderos para bicicletas particulares ya que es muy común que los ciclistas se confundan y estacionen sus bicicletas en las estaciones. Cuando esto sucede en general se termina inhabilitando algún módulo de anclaje. En caso de ser posible, se recomienda agregar algunos puntos para el estacionamiento de bicicletas particulares en las inmediaciones de la estación.

2.4.2.3 Recomendaciones generales
Además de todas las recomendaciones para la ubicación de las estaciones, se presentan aquí también recomendaciones para establecer condiciones adecuadas para la participación

- Garantizar que criterios para ubicación e instalación de estaciones del CAMEP sean claros eviten futuros problemas en trámites para estaciones, en especial para ubicación en andenes, plazuelas, parques etc.;
- Hacer análisis previo para identificar posibles espacios con restricciones (secciones viales, espacios públicos donde hay restricción y apuntar zonas que tienen requerimientos adicionales - ej Patrimonio Cultural) e indicar esto en pliegos de licitación;
- Buscar solución para centralizar trámites para facilitar implementación de estaciones.
- La ubicación de cajones para el estacionamiento de bicicletas y estaciones en espacio público deberá ser viabilizada con la Secretaría Distrital de Planeación y requerirá de los ajustes normativos que permitan segmentar los componentes de los perfiles viales a fin de permitir el estacionamiento de vehículos en el espacio público construido.

2.4.3 Bicicletas
Es importante considerar que en el caso de los permisos o CAMEP (Contrato para Administración, Mantenimiento y Aprovechamiento Económico de Espacio Público), el mecanismo legal que establece la relación con operadores solo permite la definición de normas para el uso del espacio público.

Según se explica en el capítulo de Factibilidad Legal e Institucional, es posible implementar una reglamentación del servicio de alquiler de bicicleta, que debería ser aprobado por el Concejo. En esta reglamentación podrán incluirse especificaciones o características mínimas que deberían cumplir los vehículos del sistema de bicicletas compartidas.

Es importante dar la recomendación que las bicicletas deben atender a requisitos mínimos de seguridad y permitir su identificación por parte del equipo de fiscalización de la Secretaría Distrital de Movilidad (SDM). Adicionalmente, son recomendados algunos requisitos de calidad y resistencia que pueden establecer un estándar mínimo
para el servicio prestado en la ciudad. En este sentido, recomendamos las siguientes especificaciones, compatibles con las discutidas anteriormente en 2019 como parte del proceso licitatorio para CAMEP, pero simplificada:

1. Numeración única, fácilmente legible y visible sobre la bicicleta
2. Diseño de tipo urbano, con marco bajo y manubrio de ciudad
4. Pie de apoyo para estacionar la bicicleta de manera vertical
5. Timbre, reflectivos en los pedales y luces (blanca delantera y roja trasera) que se activen en el momento de puesta en marcha y se mantengan encendidas un tiempo después de finalizada la marcha. Las luces deben ser selladas, para evitar la entrada de agua que pueda dañar los circuitos.
6. Pedales metálicos y antideslizantes
7. Guardabarros delantero y trasero
8. Paquetero delantero de tipo canasta o alguna otra forma que garantice que los elementos que se ubiquen ahí no se caigan mientras la bicicleta está en movimiento.
9. Ruedas con un mismo diámetro y con neumáticos resistentes a pinchazos y al uso intensivo
11. Asiento con altura fácilmente regulable y que cuente con un sistema que evite su extracción
12. Sistema de cables y componentes incorporados dentro del chasis para minimizar el vandalismo
13. Transmisión en cadena o en cardán. Si la transmisión es por medio de cadena, esta debe estar cubierta en gran parte de su longitud para evitar el contacto con la ropa
14. Diseño y colores fácilmente identificables y piezas antivandálicas no compatibles con herramientas comerciales

2.4.4 Datos compartidos

Es importante considerar que en el caso de los permisos o CAMEP (Contrato para Administración, Mantenimiento y Aprovechamiento Económico de Espacio Público), el mecanismo legal que establece la relación con operadores solo permite la definición de normas para el uso del espacio público. Según se explica en el capítulo de Factibilidad Legal e Institucional, la limitación que tiene la administración actualmente para establecer obligaciones distintas a las relacionadas con el aprovechamiento y ocupación del espacio público puede subsanarse con la creación y reglamentación del servicio de micromovilidad por parte del Concejo distrital. En esta reglamentación podrán establecerse obligaciones relacionadas con el uso de datos de los usuarios y la entrega de información consolidada a la SDM.
Es importante también especificar datos de movilidad que los operadores deben entregar al poder público. Estos datos operacionales son importantes para los procesos de planeación de la movilidad y también para una fiscalización del uso del espacio público por las bicicletas, y deben ser solicitados a través del permito para aprovechamiento del espacio público o de una reglamentación de este tipo de servicio, que defina los estándares mínimos a ser considerados por los operadores.

Es este sentido, se puede adoptar los requerimientos que fueron propuestos por NUMO (New Urban Mobility Alliance) en el documento “Recomendaciones sobre la regulación de la micromovilidad para la Secretaría Distrital de Movilidad de Bogotá”. La recomendación es este documento es la siguiente:

“Los operadores deberán proveer una Interfaz de Programación de Aplicaciones (API) accesible a la ciudad que provea datos definidos y cumpla con unas especificaciones de datos que son conocidas en la industria, sea open source pero cumpliendo con las leyes colombianas en cuanto a privacidad de los usuarios y que no requiera cantidades excesivas de datos. La especificación utilizada en la ciudad de Los Ángeles, EE.UU puede servir como base:

MDS Provider:
https://github.com/CityOfLosAngeles/mobility-data-specification/tree/dev/provider

MDS Agency:
https://github.com/openmobilityfoundation/mobility-data-specification/tree/dev/agency

La Secretaría Distrital de Movilidad podrá, según su discreción, emitir nuevas versiones de la especificación o actualizar la existente y requerir que el operador utilice la versión más reciente al lanzar una actualización automática y/o deshabilitar el soporte a las versiones previas.

La Secretaría Distrital de Movilidad podrá utilizar todos los datos que el operador proporcione de acuerdo con la Especificación de datos de movilidad, incluyendo, pero no limitados a, visualizar datos en tiempo real y datos de disponibilidad de vehículos en tiempo real al público. Aun así, la Secretaría Distrital de Movilidad asegurará la protección de la información personalmente identificable y en general la privacidad de los usuarios.

El operador no podrá cambiar la URL de la API sin notificar a la Secretaría Distrital de Movilidad con al menos 30 días de anticipación. Los operadores deberán proveer una interfaz estándar de panel (dashboard) para
facilitar la visualización, búsqueda y mapeo de datos por parte de la Secretaría Distrital de Movilidad.

El operador deberá proteger la información personal de los usuarios, y los datos deben ser anonimizados en cuanto a la información de los usuarios. La información resumida de desempeño del programa en memorandos o actualizaciones se podrá compartir con el público. Los datos detallados se protegerán como indique la ley.

Irrespetivo de los resultados que entregue cualquiera de las API de datos, será responsabilidad única del operador cumplir con los requerimientos de programa de la Secretaría Distrital de Movilidad establecidos aquí. El no mantener datos consistentemente precisos y en tiempo real puede resultar en la suspensión del permiso hasta que los problemas identificados por la Secretaría Distrital de Movilidad se resuelvan.”

3 ESTRUCTURACIÓN LEGAL E INSTITUCIONAL

3.1 Identificación y análisis del marco institucional y los instrumentos legales para la implementación y operación.

3.1.1 Análisis del marco legal y regulatorio relevante para la implementación de los sistemas de bicicletas públicas o compartidas en Colombia

Si bien en el ordenamiento jurídico colombiano no existe un régimen especial y específico aplicable a la implementación y operación de sistemas de bicicletas públicas y compartidas, se debe tener en cuenta las siguientes normas relevantes y aplicables al uso de la bicicleta como modo de transporte, a la ocupación del espacio público y la aplicación de fuentes posibles de ingresos para la implementación de los sistemas de bicicletas compartidas.

3.1.1.1 Normatividad nacional relacionada con el uso de la bicicleta como vehículo y como modo de transporte

- La Ley 336 de 1996, mediante la cual se unificaron los principios y criterios para armonizar la reglamentación del transporte en sus diferentes modos, no contempla la prestación del servicio público de transporte mediante sistemas de bicicletas pública o compartidas y tampoco ha sido reglamentada por parte del Gobierno nacional. Es preciso aclarar que la competencia para la creación del transporte en bicicleta como modalidad recae de manera exclusiva en el presidente de la República en ejercicio de la potestad reglamentaria indelegable e inagotable contemplada en el Artículo 189 de la Constitución Política de 1991. Esto significa que la implementación y operación de un SBC en las ciudades colombianas
implicará la prestación de un servicio, pero no del servicio público de transporte en términos de lo establecido por la ley, por lo que no les corresponde a las autoridades locales autorizar su funcionamiento en términos de una licencia administrativa (permiso) sino implementarlo a través de los instrumentos de gestión con los que cuenta el Estado para el cumplimiento de sus fines, esto es, el contrato estatal.

- **La Ley 769 de 2002**, por la cual se expide el Código Nacional de Tránsito, regula la forma en que deben circular y comportarse los diferentes actores y vehículos que circulen en las vías públicas y privadas del país. En este sentido, el Código de tránsito incluye a la bicicleta dentro del grupo de vehículos no motorizados cuya circulación se permite en ciclovías (vías transitoriamente destinadas a la circulación de bicicletas), ciclorrutas (vías destinadas a la circulación exclusiva de bicicletas) o calzadas vehiculares. De igual manera el Código contempla las normas generales y específicas que deben cumplir los conductores de bicicletas. (Artículo 2, 94 y 95).

- **La Ley 1811 de 2016**, mediante la cual se otorgan incentivos para promover el uso de la bicicleta, genera el atributo de considerar la bicicleta como medio principal de transporte en el territorio nacional y se propone con ello incrementar los viajes en este medio de transporte, para lo cual crean incentivos y se reforma parcialmente las normas del código de tránsito que regulan la circulación de bicicletas con el fin de facilitar su uso. Las disposiciones más relevantes relacionadas con la implementación y operación de sistemas de bicicletas compartidas son:

 - Artículo 3. Crea un beneficio tarifario por uso intermodal de la bicicleta y los sistemas de transporte masivo y sistemas estratégicos de transporte público.
 - Artículo 5. Crea el incentivo en especie (descanso remunerado) para funcionarios públicos que utilicen la bicicleta como modo de transporte
 - Artículo 9. Reforma el artículo 95 del Código Nacional de Tránsito y dispone que las bicicletas deben circular ocupando un carril vehicular.

- **La Ley 1955 de 2019**, por la cual se expide el Plan Nacional de Desarrollo 2018-2022 “Pacto por Colombia, Pacto por la Equidad”, establece en el artículo 99 la necesidad aumentar medidas para incrementar el uso de medios no motorizados (entiéndase la bicicleta), con el fin de que se integren con otros modos y modalidades de transporte. Así mismo, mantuvo vigente la disposición de estimular el uso de tecnologías limpias y modos no motorizados en todo el territorio nacional (entendidos como el viaje a pie, bicicleta o tricimóvil, entre otros) contemplada en el Artículo 204 de la Ley 1753 de 2015. La inclusión del tema en el Plan Nacional de Desarrollo consolida la bicicleta como una opción de transporte, dando un soporte normativo de política pública y dejando presente la necesidad de los sistemas de bicicletas compartidas para el territorio colombiano.
La **Resolución 160 de 2017 del Ministerio de Transporte**, por la cual se reglamenta el registro y la circulación de vehículos motorizados tipo bicicleta y ciclomotores, contempla las siguientes disposiciones aplicables al funcionamiento de un sistema de bicicletas públicas o compartidas:

- **Artículo 3:** Define las bicicletas de pedaleo asistido como aquellas equipadas con un motor auxiliar con potencial nominal continua no superior a 0.35 kW y una velocidad máxima de 25 Km/h. Estas bicicletas no deben ser registradas y pueden circular libremente por la ciclorrutas y ciclovías.

- **Artículo 18. Uso del casco.** Reglamenta el uso del casco haciéndolo obligatorio para los ciclistas menores de edad y cuando se trate de eventos deportivos, competitivos y de entrenamiento. Las autoridades locales de tránsito podrán determinar los casos en que es obligatorio el uso del casco en zonas rurales y urbanas.

La **Resolución 3256 de 2018 del Ministerio de Transporte** reglamenta y autoriza la prestación del servicio público de transporte de pasajeros en triciclos o tricimóvil no motorizados y tricimóvil con pedaleo asistido, y la alimentación de estos al SITM, SETP, SITP y SITR de acuerdo con las necesidades propias de cada sistema. Si bien esta no es una norma directamente aplicable a los SBC, resulta útil considerarla en el marco legal como referencia y distinción de la prestación de un servicio público de transporte en vehículos no motorizados.

3.1.1.2 Normatividad nacional relacionada con el uso, ocupación y aprovechamiento del espacio público

La primera definición de espacio público en el ordenamiento jurídico colombiano se remonta a la **Ley 9 de 1989** según la cual es el “conjunto de inmuebles públicos y los elementos arquitectónicos y naturales de los inmuebles privados, destinados por su naturaleza, por su uso o afectación, a la satisfacción de necesidades urbanas colectivas que transcien dan, por tanto, los límites de los intereses, individuales de los habitantes”. Esta misma ley autoriza en su artículo 7 a las entidades territoriales para contratar con entidades privadas la administración, mantenimiento y aprovechamiento económicos de los bienes de uso público. Posteriormente, la **Ley 1801 de 2016** Código Nacional de Policía y Convivencia definió el espacio público como el “conjunto de muebles e inmuebles públicos, bienes de uso público, bienes fiscales, áreas protegidas y de especial importancia ecológica y los elementos arquitectónicos y naturales de los inmuebles privados, destinados por su naturaleza, usos o afectación, a la satisfacción de necesidades colectivas que trascienden los límites de los intereses individuales de todas las personas en el territorio nacional”.

No obstante, el régimen general del espacio público en Colombia se encuentra contenido en el Decreto Único Reglamentario del Sector Vivienda, Ciudad y Territorio - **Decreto 1077 de 2015-**, donde se define de manera general los elementos, destinación y tratamiento del espacio público y se otorga a los municipios y distritos la facultad para definir, delimitar y establecer los usos permitidos en el espacio público a través de los Planes de ordenamiento territorial. De este marco regulatorio y de cara
a la implementación de los sistemas de bicicletas públicas o compartidas se extrae lo siguiente:

a. En virtud de lo establecido en el artículo 2.2.6.1.1 la utilización del espacio público está sometida a la obtención de una licencia de intervención y ocupación, consistente en la autorización previa para ocupar o para intervenir los bienes de uso público incluidos en el espacio público de según lo definen las normas urbanísticas adoptadas en los Planes de Ordenamiento Territorial y en los instrumentos que lo desarrollen y/o lo modifiquen. Esta licencia debe ser otorgada mediante un acto administrativo de carácter particular y concreto, cuyo trámite, estudio y expedición será competencia del alcalde o la autoridad distrital competente. Se encuentran exceptuadas de la obtención de licencia para la intervención y ocupación del espacio público las entidades del nivel central o descentralizadas de la Rama Ejecutiva del orden nacional, departamental, municipal y distrital salvo las empresas industriales y comerciales del Estado y las sociedades de economía mixta, siempre y cuando en el cumplimiento de sus funciones ejecuten obras previstas en los planes de desarrollo nacional, departamental, municipal o distrital y en aquellos instrumentos que los desarrollen según lo dispuesto en el artículo 2.2.6.1.1.12 del mencionado decreto. Finalmente, se debe considerar que la licencia de intervención y ocupación del espacio público tendrá una vigencia de veinticuatro (24) meses, contados a partir de la fecha en la que quede en firme el acto administrativo, para la ejecución total de las obras autorizadas, y podrá prorrogarse por una sola vez, por un plazo igual a la mitad del tiempo que fue inicialmente otorgado.

Lo anterior implica que, para la implementación del sistema de bicicletas compartidas, se deberá considerar que la entidad pública o privada encargada de la implementación el sistema deberá realizar el trámite de licenciamiento para cada estación del sistema, el cual dependerá de la naturaleza del espacio que ocupará cada una de las estaciones, así:

<table>
<thead>
<tr>
<th>Tipo de bien</th>
<th>Requisito</th>
<th>Observación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bienes de uso público que conforma el sistema de espacio público (andenes, plazas, parques, antejardines)</td>
<td>Licencia de intervención y ocupación</td>
<td>Se exceptúan las intervenciones a cargo de una entidad distrital/municipal, siempre y cuando el proyecto se encuentre contemplado en el Plan de desarrollo. Pero si el proyecto está a cargo de una empresas industriales y comerciales del Estado o una sociedad de economía mixta, sí se deberá contar con la licencia.</td>
</tr>
<tr>
<td>Calzada vehicular</td>
<td>Licencia de intervención y ocupación</td>
<td>Puede requerir autorización adicional según normatividad local</td>
</tr>
<tr>
<td>Bienes fiscales</td>
<td>Autorización entidad pública propietaria</td>
<td>Si la instalación de la estación implica una adecuación física, se debe solicitar licencia de construcción ante curaduría urbana competente</td>
</tr>
<tr>
<td>Bienes privados</td>
<td>Autorización del propietario</td>
<td></td>
</tr>
</tbody>
</table>
b. De conformidad con lo establecido en el artículo 7 de la Ley 9 de 1989 y el artículo 2.2.3.3.3 del Decreto 1077 de 2015 los municipios y distritos tienen la facultad para contratar la administración, mantenimiento y aprovechamiento económico del espacio público por parte de particulares. Esto implica para la implementación de los sistemas de bicicletas públicas o compartidas que el uso del espacio público para la instalación de estaciones o estacionamiento de bicicletas por parte de un particular puede representar un beneficio económico que puede, de acuerdo con la normatividad local, estar sometido al pago de una retribución económica.

De la normatividad vigente que regula el espacio público se desprende que los municipios tienen la facultad para reglamentar de forma específica el uso y aprovechamiento económico del espacio público, así como determinar las pautas de diseño y ocupación de este a través de los manuales distritales o municipales de espacio público. No obstante, no se puede confundir esta facultad con la posibilidad de autorizar, sin la existencia de un marco legal nacional y a título de licencia administrativa, la operación de un sistema de bicicletas compartidas como servicio de transporte.

3.1.1.3 Normatividad nacional relacionada con posibles fuentes de ingreso para el funcionamiento de los sistemas de bicicletas compartidas

La experiencia nacional e internacional da cuenta de la existencia de fuentes de ingreso de naturaleza pública y privada alternativas a la tarifa o membresía y a los recursos ordinarios de las entidades territoriales para financiar la implementación y operación de los sistemas de bicicletas compartidas. Se destacan en la literatura más reciente (ITDP, 2020) fuentes como la explotación de publicidad y patrocinios de marcas privadas, la captura de valor del suelo, cargos por estacionamiento, tasas ambientales, entre otras. En el marco legal nacional se identifican las siguientes figuras y disposiciones:

- **Porcentaje ambiental sobre impuesto predial.** De conformidad con el Artículo 317 de la Constitución política de 1991 y el Artículo 44 de la Ley 99 de 1993 los municipios y distritos deberán establecer una sobretasa al impuesto predial y transferir lo recaudado por dicho concepto a las autoridades ambientales urbanas y rurales (Áreas metropolitanas, secretarías de ambiente o corporaciones autónomas regionales), con el fin de ser invertido en la ejecución de programas y proyectos de protección o restauración de los recursos ambientales.

- **Explotación de la publicidad en espacio público.** La publicidad exterior visual está definida por la Ley 140 de 1994 como el medio masivo de comunicación destinado a informar o llamar la atención del público a través de elementos visuales visibles desde las vías o el espacio público. Si bien desde
la ley se establecen lineamientos generales y medidas básicas de protección al medio ambiente corresponde a los municipios y los distritos determinar las pautas y el funcionamiento de la publicidad exterior visual en su jurisdicción.

- **Vinculación de un tercero - patrocinador.** La vinculación de una marca patrocinadora como fuente de ingresos de un sistema de bicicletas compartidas es posible en Colombia a través de la celebración de un contrato de *sponsoring* o esponsorización, en virtud del cual un sujeto llamado patrocinador se obliga a financiar o proveer bienes y servicios a una persona natural o jurídica (patrocinado) a fin de que pueda desarrollar su actividad habitual y desde ella promover o divulgar la marca, nombre o signos distintivos del patrocinador o sponsor, configurando una suerte de publicidad indirecta o de retorno. Si bien se trata de un contrato atípico (no regulado) e innominado (no posee una denominación dada por la legislación) es una figura ampliamente utilizada en el derecho mercantil colombiano.

Por su parte, la Ley 1955 de 2019 por la cual se expide el Plan de Nacional de Desarrollo 2018-2022, contempla diversas fuentes alternativas de ingresos para garantizar la sostenibilidad y cobertura de los sistemas de transporte público SITM, SETP y SITP, de manera que si los sistemas de bicicletas compartidas son implementados como un componente integrador o alimentador de aquellos (en virtud del Artículo 99 de la misma norma), se abre la puerta para destinar un porcentaje dichos recursos para pagar su implementación y operación. A continuación, se presenta una síntesis de los instrumentos contemplados en el artículo 97 de la Ley 1955 de 2019, su alcance y las condiciones que lo harían factible como fuente de ingresos para los sistemas de bicicletas compartidas:

<table>
<thead>
<tr>
<th>Fuente</th>
<th>Descripción</th>
<th>¿Qué se requiere para que sea una fuente factible de ingresos?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribución por estacionamiento</td>
<td>Es un ingreso de naturaleza tributaria cobrado sobre la tarifa de parqueaderos públicos en vía o fuera de vía</td>
<td>Crear y definir el tributo mediante acuerdo municipal o distrital</td>
</tr>
<tr>
<td>Recursos por estacionamiento en vía pública</td>
<td>Recursos recaudados por la ciudad como contraprestación por el estacionamiento en vía pública</td>
<td>Implementar el sistema de cobro por estacionamiento en vía pública</td>
</tr>
<tr>
<td>Infraestructura nueva para minimizar la congestión</td>
<td>Recursos recaudados al fijar un precio diferencial por el uso de una infraestructura vial nueva (puente, viaducto o vía)</td>
<td>Estructuración y ejecución de una infraestructura de transporte nueva</td>
</tr>
<tr>
<td>Áreas con restricción vehicular</td>
<td>Recursos recaudados por el cobro de acceso a zonas restringidas</td>
<td>La zona, tarifa y sistema de cobro debe estar definida en estudios técnicos previos a su implementación.</td>
</tr>
<tr>
<td>Multas de tránsito</td>
<td>Hasta el 60% de los recursos recaudados por multas de tránsito</td>
<td>El porcentaje destinado debe ser definido y sustentado en un estudio técnico previo a su destinación.</td>
</tr>
</tbody>
</table>

14 Corte Constitucional. Sentencia C-535 de 1996.
3.1.1.4 Conclusiones en relación con la normatividad nacional relevante

- Un sistema de bicicletas compartidas se puede constituir como un servicio, pero no como un servicio público de transporte, por lo que su implementación deberá adelantarse a través de un contrato estatal como instrumento general mediante el cual las entidades públicas dan cumplimiento a sus fines y propósitos. La tipología contractual dependerá del modelo de negocio más conveniente para el proceso de cada ciudad. El vínculo jurídico entre el operador del sistema y el usuario no corresponderá a un contrato de transporte, por lo que no se le aplicará dicho régimen de responsabilidad ante el incumplimiento por parte del operador o con ocasión de los daños que sufra un usuario.

- Los sistemas de bicicletas públicas o compartidas pueden implementarse como una estrategia para mejorar la calidad y cobertura de los sistemas de transporte masivo y sistemas estratégicos de transporte público. Para promover su uso los entes territoriales pueden implementar el beneficio tarifario por uso intermodal contemplado en la Ley 1811 de 2016.

- En virtud de la Resolución 160 de 2017 del Ministerio de Transporte los municipios y distritos tiene la facultad de determinar los casos en que será obligatorio el uso del casco por parte de los ciclistas. Esto en relación con las recomendaciones internacionales que existen sobre flexibilizar el uso del casco para no desincentivar el uso de los sistemas de bicicletas compartidas.

- Los municipios y distritos tienen la competencia para determinar las condiciones de ocupación y aprovechamiento económico del espacio público, de acuerdo con planes maestros o manuales de espacio público. En todo caso, la instalación de estaciones de un SBC estará sometida al otorgamiento de una licencia de intervención y ocupación del espacio público siempre que esté a cargo de un sujeto privado, una sociedad de economía mixta o una sociedad industrial y comercial del Estado. Si la instalación de las estaciones está a cargo de una entidad pública del orden municipal o distrital no se requerirá la expedición de la licencia, siempre y cuando el SBC esté contemplado como proyecto en el Plan de desarrollo territorial.
Los municipios y distritos cuentan con la posibilidad de generar fuentes alternativas de ingresos para la implementación y operación de los Sistemas de bicicletas compartidas, dentro de las cuales se encuentran (i) los recursos recaudados por la autoridad ambiental urbana por concepto de sobretasa ambiental al impuesto predial, (ii) la destinación de los recursos recaudados por concepto de estacionamiento en vía, (iii) hasta el 70% de los recursos recaudados por multas de tránsito o (iv) permitir la instalación de publicidad exterior visual y digital en los activos del sistema por parte de la entidad pública o privada a cargo de la operación, esto de conformidad con la reglamentación especial del municipio o distrito en materia de publicidad exterior visual y los contratos previamente celebrados cuyo objeto se relacione con la materia.

Si bien existen otras fuentes alternativas contempladas en la Ley 1955 de 2019 para la sostenibilidad y financiación de los sistemas de transporte público jurídicamente posibles y aplicables al ejercicio de los sistemas de bicicletas compartidas, la mayoría de ellas suponen una redistribución de los ingresos ya percibidos por la ciudad (multas de tránsito), o un desarrollo adicional traducido en estudios de factibilidad, aprobación ante los concejos municipales o distritales (contribución sobre estacionamientos fuera de vía) o la implementación misma de un proyecto adicional y de gran envergadura (infraestructura nueva para minimizar la congestión).

3.1.2 Análisis de los instrumentos legales para implementación y operación de un sistema de bicicletas públicas o compartidas

La implementación de un sistema de bicicletas públicas o compartidas implica la adopción de instrumentos legales para su autorización, así como la configuración de una serie de relaciones jurídicas entre los diferentes actores involucrados que da lugar a un determinado régimen de responsabilidad. A continuación, se exponen los aspectos más relevantes de los instrumentos legales y las relaciones jurídico-negociales que pueden conformarse.

3.1.2.1 Análisis de los instrumentos legales para la implementación de un sistema de bicicletas compartidas

De acuerdo con lo indicado en el análisis del marco legal nacional, la implementación de un sistema de bicicletas compartidas puede constituir la prestación de un servicio, pero no un servicio público de transporte en términos de lo establecido en la Ley 336 de 1996. Ello implica que el alcalde municipal o distrital no tendrá la competencia para permitir su prestación mediante un acto administrativo, ni fijar condiciones, niveles de servicio o tarifa a pagar por el uso del sistema (la tendría en ejercicio de la autoridad administrativa de transporte, en caso de tratarse de un servicio de transporte público). No así, la administración tendría la posibilidad de implementarlo como un servicio, no de transporte, si no de alquiler de bicicletas y para ello podría autorizarlo mediante acto administrativo previo a la regulación por parte del Concejo municipal o distrital de acuerdo en el ejercicio de la competencia general otorgada por el Artículo 313 de la Constitución Política de 1991.
Así las cosas, la implementación de un SBC puede adelantarse a través de los instrumentos con los que cuenta el Estado para dar cumplimiento a sus propósitos. Según lo dispuesto por el numeral 3 del Artículo 2 de la Ley 80 de 1993, los contratos estatales son los instrumentos mediante los cuales las entidades públicas dan cumplimiento a los fines del estado y a la eficiente prestación de los servicios, entendiendo como servicio público todos aquellos destinados a satisfacer necesidades colectivas en forma general bajo la dirección y control del Estado. En este sentido, la implementación y operación de un sistema de bicicletas compartidas se pondrá en práctica mediante la celebración de un contrato estatal, cuya modalidad dependerá del esquema institucional y el modelo de negocio seleccionado para cada ciudad, de acuerdo con sus propósitos y lineamientos.

Las entidades públicas sometidas al Estatuto General de Contratación pública deberán seleccionar el contratista bajo las reglas y principios establecidos en la Ley 80 de 1993, la Ley 1150 de 2007 y demás normas que las complementen. De acuerdo con el ordenamiento jurídico colombiano, la tipología contractual y el procedimiento dependerán del modelo de negocios escogido para cada ciudad, aunque de manera preliminar se puede distinguir dos escenarios que dependen de la naturaleza pública o privada de la entidad a cargo de la implementación y operación del sistema, así:

<table>
<thead>
<tr>
<th>Tipologías contractuales</th>
<th>Implementador/operador es una entidad pública</th>
<th>Implementador/operador es una empresa privada</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Se materializa mediante un contrato interadministrativo que podrá tener como objeto la prestación de un servicio o la administración delegada de recursos para la operación del sistema.</td>
<td>La tipología contractual dependerá del modelo de negocios, pero se podrá celebrar un contrato de prestación de un servicio (operación) o un contrato de concesión.</td>
</tr>
<tr>
<td>Procedimiento (modalidad)</td>
<td>Se podrá celebrar una contratación directa (Ley 80 de 1993), siempre y cuando se acredite la idoneidad y experiencia de la entidad contratista, esto es que su objeto social esté relacionado con el objeto del contrato.</td>
<td>Se aplica, por regla general, el procedimiento de licitación pública contemplado en la Ley 80 de 1993 y/o de la Ley 1508 de 2012 si se trata de un contrato de concesión.</td>
</tr>
<tr>
<td></td>
<td>Se aplica, por regla general, el procedimiento de licitación pública contemplado en la Ley 80 de 1993 y/o de la Ley 1508 de 2012 si se trata de un contrato de concesión.</td>
<td>Las empresas industriales y comerciales del Estado y las sociedades de economía mixta pueden tener procedimientos especiales contemplados en sus manuales de contratación.</td>
</tr>
</tbody>
</table>

3.1.2.2 Análisis de las relaciones jurídicas entre la entidad contratante, el operador y el usuario

Si bien las relaciones jurídicas entre los diferentes actores que intervengan en la implementación y operación del sistema de bicicletas compartidas estarán determinadas de manera definitiva por el modelo de negocio adoptado para cada ciudad, es posible establecer algunas generalidades que dan claridad jurídica y
permiten sentar algunas premisas para el análisis de responsabilidad que asumen los diferentes actores.

- La relación entre el gobierno de la ciudad y el operador del SBC estará regida por un contrato que, dependiendo del modelo de negocios adoptado, podrá tratarse de un contrato de concesión o un contrato para la prestación de un servicio (no personal). Si la entidad operadora es de naturaleza pública será un contrato interadministrativo que podrá tener como prestación la operación o la administración delegada de los recursos para el cumplimiento del fin a cargo de la entidad contratante.

- La relación entre el operador del SBC y el usuario se materializa mediante la celebración de un contrato de naturaleza civil o comercial (depende de si el operador tiene o no la calidad de comerciante) que en todo caso no corresponderá a un contrato de transporte en términos de lo establecido en el Artículo 981 del Código de Comercio. Si bien el contrato celebrado tendrá como objeto la entrega de la bicicleta para el uso por parte del usuario y su posterior devolución, el tipo definitivo dependerá de los elementos del contrato que se definan como premisas del sistema. Se relacionan algunos tipos contractuales posibles:

 - **Contrato de comodato o préstamo de uso.** Si se define la gratuidad como premisa del sistema, el contrato a celebrar entre el operador y el usuario corresponderá a un contrato de comodato o préstamo de uso definido como aquel en que una de las partes le entrega a la otra una bicicleta (bien mueble no fungible) para que haga uso de ella y la restituya al terminar su uso (Artículo 2200 del Código Civil).

 - **Contrato de arrendamiento.** Si se define que el sistema estará sujeto al cobro de una tarifa o membresía, el contrato a celebrar entre el operador y el usuario corresponderá a un contrato de arrendamiento de bien mueble en virtud del cual el operador entregará al usuario una bicicleta (bien mueble) para su uso a cambio del pago de un precio y con la obligación de conservarla y restituirlo al finalizar el período pactado (Artículo 1973 y siguientes del Código Civil).

 - **Relación basada en condiciones de uso.** En caso de que el operador del sistema sea una entidad pública diferente a una empresa industrial y comercial del Estado o a una sociedad de economía mixta, se recomienda la formalización del vínculo con el usuario mediante una relación basada en unas condiciones de uso que deberá ser definida y reglamentada mediante acto administrativo de carácter general. Esto debido a que por regla general todos los contratos celebrados por las entidades públicas están sometidos a los principios y procedimientos establecido en la Ley 80 de 1993 lo cual haría imposible en la práctica la vinculación con cada usuario del sistema. En este sentido, la Entidad pública deberá dar a conocer los términos y condiciones bajo los cuales se deberá realizar la respectiva utilización del sistema y el uso de los elementos que lo conforman; así mismo el usuario deberá aceptar...
dichas condiciones y/o obligaciones con el fin de perfeccionar dicho servicio.

- Finalmente, entre la entidad contratante (gobierno de la ciudad) y el usuario no existiría ninguna relación de índole contractual.

Ahora bien, la naturaleza y dinámica operativa de un sistema de bicicletas compartidas implica la existencia de los denominados contratos de adhesión, cuya celebración no permite la manifestación plena del acuerdo de voluntades y se formaliza mediante la firma de un formulario contractual o la aceptación de los términos y condiciones del servicio prestado. Bajo este esquema general se tendrían las siguientes obligaciones generales a cargo de los actores:

<table>
<thead>
<tr>
<th>Actor</th>
<th>Obligaciones generales</th>
<th>Tipo de responsabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operador del sistema</td>
<td>Entregar al usuario la bicicleta para su uso</td>
<td>El operador asume responsabilidad contractual por los daños causados al usuario por el mal estado de los elementos del sistema</td>
</tr>
<tr>
<td></td>
<td>Poner a disposición del usuario los elementos del sistema que permiten su uso (estaciones, sistemas de acceso e información)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mantener los elementos del sistema en óptimas condiciones de calidad y seguridad</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brindar información veraz y oportuna al usuario para facilitar el uso del sistema</td>
<td></td>
</tr>
<tr>
<td>Usuario</td>
<td>Pagar el precio o membresía en caso de contrato oneroso</td>
<td>El usuario asume responsabilidad contractual por la pérdida total o parcial de la bicicleta. El grado de responsabilidad (culpa) dependerá de si se trata de un contrato gratuito u oneroso.</td>
</tr>
<tr>
<td></td>
<td>Restituir la bicicleta y usarla de acuerdo con las condiciones pactadas en el contrato</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conservar y custodiar la bicicleta durante el tiempo de uso, así como los demás elementos del sistema</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Informar al sistema irregularidades y/o novedades en el uso</td>
<td></td>
</tr>
<tr>
<td>Entidad contratante</td>
<td>Dependiendo del modelo de negocio asumirá obligaciones en el marco del contrato celebrado con el operador y no asume, en principio, ninguna obligación frente al usuario.</td>
<td>La entidad podrá tener una responsabilidad extracontractual frente a los daños causados al usuario.</td>
</tr>
</tbody>
</table>

De conformidad con lo anteriormente expuesto es claro que en el marco de un contrato de alquiler o préstamo de uso, independiente de si es gratuito u oneroso, la entidad u operador del SBC del usuario el uso de la bicicleta bajo su responsabilidad y riesgo, la cual es una responsabilidad personal y excluyente respecto a los daños y perjuicios que pudiese sufrir o causar a terceros; asumiendo todo tipo de responsabilidad de índole civil o penal en el ejercicio de dicha actividad y frente a cualquier siniestro de tránsito y/o delito ocasionados con la utilización de los bienes del SBC. Por su parte, el usuario es el responsable de la custodia y cuidado del bien, por lo que debe garantizar su conservación y entrega. Cuando este se extravíe o extinga por hechos de un tercero (hurto) deberá informar a las autoridades competentes y al operador del sistema con el fin de que se realicen las actuaciones administrativas pertinentes.
3.1.2.3 Análisis de responsabilidad de la entidad contratante, el operador del SBC y el usuario

Los principales riesgos en la operación de un sistema de bicicletas compartidas son, de un lado, la integridad del usuario que podría verse afectada por un siniestro de tránsito y del otro, la conservación de los bienes del sistema, especialmente las bicicletas, cuya realización por fuera de los rangos proyectados podría comprometer la estabilidad financiera del sistema. El análisis de responsabilidad y aseguramiento debe versar prioritariamente sobre estos dos aspectos, sin que ello signifique que no se contemplan otro tipo de riesgos en la actividad, así:

- La **responsabilidad del operador por daños al usuario** recae sobre aquellos daños materiales e inmateriales causados al usuario por el incumplimiento de la obligación de mantenimiento y conservación en buen estado de la infraestructura del sistema. El operador del sistema sólo será responsable por los daños causados al usuario en un accidente de tránsito cuya ocurrencia haya sido causada o determinada por el incumplimiento de alguna de sus obligaciones contractuales.

- La **responsabilidad por la pérdida total o parcial de la bicicleta** recae en el usuario y aplica en relación con los perjuicios causados por el incumplimiento de las obligaciones de custodia, cuidado y restitución del bien (bicicleta). De tratarse de un contrato de comodato o préstamo de uso (sistema gratuito) el usuario deberá aplicar la máxima diligencia en la custodia de la bicicleta y responderá por la más leve falta en el deber de cuidado. Por su parte, si el uso del sistema está sometido al pago de un precio, al usuario se le exigirá un deber moderado de cuidado.

- El gobierno de la ciudad o entidad contratante del sistema sólo será responsable extracontractualmente por los daños causados al usuario con ocasión del uso del sistema, cuando se determine y acredite que estos han sido causados por una falla del servicio como fundamento de la responsabilidad extracontractual del Estado.

- Sin perjuicio de las garantías y pólizas establecidas como obligación por el estatuto general de contratación, la entidad contratante podrá exigir al operador del SBC la adquisición de pólizas de responsabilidad civil por los daños que pudiesen sufrir los usuarios del sistema.

<table>
<thead>
<tr>
<th>Actor</th>
<th>Entidad contratante</th>
<th>Operador del sistema</th>
<th>Usuario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riesgo</td>
<td>Daños causados al usuario por acción u omisión de la entidad contratante</td>
<td>Daños causados al usuario por mal estado de los elementos del sistema</td>
<td>Pérdida total o parcial de la bicicleta</td>
</tr>
<tr>
<td>Tipo de responsabilidad</td>
<td>Extracontractual</td>
<td>Contractual</td>
<td>Contractual</td>
</tr>
<tr>
<td>Régimen de responsabilidad</td>
<td>Subjetivo. Se debe probar que el Estado</td>
<td>Subjetivo. Se debe probar que existe el</td>
<td>Subjetivo. Se deberá probar que la pérdida</td>
</tr>
<tr>
<td>¿Cómo asegurar el riesgo?</td>
<td>La entidad podrá incluir el riesgo en sus seguros de responsabilidad civil contractual y extracontractual</td>
<td>El operador podrá adquirir un seguro de responsabilidad civil contractual y extracontractual</td>
<td>El operador podrá asegurar los bienes mediante un contrato de seguro real de daño que proteja a cada uno de los bienes del sistema</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ha fallado por acción u omisión a un deber de cuidado (falla del servicio)</td>
<td>daño fue causado por el incumplimiento de la obligación de mantenimiento del operador</td>
<td>de la bicicleta es atribuible a la imprudencia del usuario, cuyo grado dependerá de si el sistema es gratuito u oneroso.</td>
<td></td>
</tr>
</tbody>
</table>
3.2 Análisis de factibilidad legal e institucional

3.2.1 Análisis del esquema legal e institucional propuesto en estudios o procesos anteriores

Los antecedentes para la implementación de un sistema de bicicletas compartidas en Bogotá se remontan al año 2011 con el piloto BICIBOG liderado por la Secretaría Distrital de Movilidad y al proyecto Bici corredores del año 2012 y se identifican, para efectos de los análisis institucionales y legales, los siguientes precedentes:

- **Estudio realizado por la firma Steer Davies and Gleave en el marco del contrato de consultoría SDG-SDM 20121868.** El estudio hace un recuento de las entidades relacionadas con la formulación o ejecución de políticas de movilidad en bicicleta, concluyendo que existe una gran dispersión de las acciones emprendidas de manera que se hace necesario seguir una ruta de integración institucional en torno a una suerte de ente gestor de las políticas sectoriales.

- **Decreto 596 de 2014,** por medio del cual se adopta el Sistema de bicicletas compartidas para la ciudad de Bogotá, define el sistema como el conjunto de elementos, equipos y operaciones logísticas para facilitar la movilidad o desplazamiento en bicicletas de uso público. De acuerdo con el Decreto la Secretaría distrital de movilidad deberá implementar un sistema basado en estaciones y, de ser prestado a través de terceros, deberán cumplirse los principios y procedimientos establecidos en la Ley 80 de 1993.

- **Contrato 1042 de 2015.** Mediante el proceso de licitación SDM-LP-026-2014 se adjudicó el contrato de concesión para la implementación y operación del sistema de bicicletas compartidas de Bogotá bajo un modelo de negocio que contemplaba la adquisición, instalación, puesta en marcha y operación del sistema por cuenta y riesgo del concesionario a cambio de la participación del 100% en los ingresos recaudados por membresías y el 65% de los ingresos colaterales provenientes de la explotación publicitaria o de un contrato de patrocinio. Ante reiterados incumplimientos del cronograma de inicio por parte del contratista, mediante Resolución 01 del 19 de enero de 2016, la Secretaría distrital de movilidad declaró el incumplimiento del contrato y finalmente la caducidad de este mediante Resolución 26 del 12 de octubre de 2016.

- **Propuestas de Alianza público-privada bajo la Ley 1508 de 2012.** Con posterioridad a la declaratoria de caducidad del contrato de concesión 1042 de 2015 fueron presentadas dos propuestas de alianza público-privada para la implementación, por iniciativa privada, de un sistema de bicicletas compartidas para la ciudad de Bogotá. La primera de ellas fue rechazada por la no entrega de información requerida en los tiempos establecidos en la ley, mediante Resolución 131 del 11 de julio de 2018 de la Secretaría distrital de movilidad. La segunda propuesta fue suspendida en la etapa de pre factibilidad por solicitud del proponente.

- **Alquiler de bicicletas mediante el aprovechamiento del espacio público - CAMEP.** En el marco del régimen de aprovechamiento económico del espacio
público de Bogotá adoptado mediante el Decreto 552 de 2018, se dio trámite a un proceso licitatorio para la adjudicación de un contrato para la administración, mantenimiento y aprovechamiento económico del espacio público para el alquiler de bicicletas compartidas. Bajo este nuevo modelo, se otorga al operador la facultad para aprovechar las zonas de espacio público mediante la instalación de estaciones de bicicletas compartidas (mobiliario urbano) a cambio de una retribución económica fijada por la Secretaría distrital de movilidad de acuerdo con la dimensión y ubicación de espacio. El proceso licitatorio SDM-LP-085 de 2019 finalmente fue declarado desierto.

No obstante tratarse de un contrato para la autorización del aprovechamiento del espacio, los pliegos de condiciones y sus anexos definieron parámetros mínimos a cumplir para el desarrollo de la actividad de alquiler de bicicletas, tales como:

- Parámetros en relación con las bicicletas. Se exige una flota de mínimo 3.125 y máximo 4.165, las cuales deberán cumplir con una serie de especificaciones técnicas (entre otras cumplir la norma ISO43.150) y al menos el 10% de ellas deberán ser de pedaleo asistido.
- Parámetros en relación con las estaciones. Se deberán instalar mínimo 195 y máximo 278 estaciones. Si las estaciones incluyen paneles publicitarios estos no podrán exceder las dimensiones y máximas y cumplir lo establecido en el Decreto 959 de 2000.
- Obligaciones en relación con la plataforma tecnológica para el alquiler de bicicletas. El aprovechador deberá contar con un portal web y una aplicación de usuario que cumplan con las especificaciones técnicas establecidas por la Secretaría distrital de movilidad, así como un canal de atención telefónica y trámites de PQRS.
- Obligaciones en relación con el suministro de información. El aprovechador debía compartir en tiempo real los datos del sistema bajo el estándar GBFS (estado de las estaciones, cantidad de anclajes y bicicletas disponibles, tiempos de operación y alertas del sistema), así como presentar un reporte mensual con los datos resumen de la operación.
- Parámetros en relación con la operación y los niveles de servicio. Se establece como obligación el cumplir con la actividad en un horario mínimo de servicio (5:00 a 22:00 horas) y se establecen dos tipos de indicadores (evaluables e informativos) de resultado para evaluar el desempeño del aprovechamiento económico [sic]. Los indicadores evaluables son: bicicletas disponibles, anclajes disponibles y estado de las bicicletas están sometidos a revisión diaria o mensual y su incumplimiento dan lugar a la imposición de una multa contractual.

Finalmente, tomando como referencia los antecedentes del proceso y mientras se mantenga la intención de avanzar en la implementación del sistema de bicicletas públicas y/o compartidas bajo el marco regulatorio del aprovechamiento económico del espacio público, se presentan las siguientes recomendaciones en relación con el marco legal e institucional:
• En tanto el objeto del contrato o autorización versará sobre el aprovechamiento del espacio público, se recomienda que las obligaciones contenidas en los instrumentos legales (contrato o acto administrativo) estén relacionadas directamente con el adecuado uso del espacio público, absteniéndose de incluir en los mismos instrumentos parámetros relacionados con el alquiler de bicicletas.

• Se sugiere equiparar las obligaciones, cargas y costos por el aprovechamiento del espacio público para patinetas y bicicletas, puesto que en términos reales se configuran como competidores dentro de un mismo mercado, cuyo trato desigual desde las cargas no atendería a criterios razonables ni proporcionales.

3.2.2 Análisis de la normatividad local vigente

3.2.2.1 Normatividad relacionada con la ocupación del espacio público

El sistema de espacio público de Bogotá se encuentra definido y delimitado por el Plan de ordenamiento territorial (compilado por el Decreto 190 de 2004), en el cual se diferencian, como elementos de la estructura funcional, el sistema de movilidad y el sistema de espacio público construido. Para efectos del presente análisis se destaca el subsistema vial como componente del primero y el espacio público peatonal como elemento del segundo, así:

El análisis de viabilidad para la ocupación por parte estaciones y bicicletas se realiza sobre estos dos componentes de la estructura funcional, teniendo que, de acuerdo con lo establecido en el POT y el plan maestro de espacio público (Decreto 215 de 2005) se concluye lo siguiente:

• En principio no existe ninguna restricción para la instalación de estaciones de un sistema de bicicletas compartidas (mobiliario urbano) en plazas, plazoletas, parques y espacios peatonales, así como en las franjas de calzada vehicular que no afecten las dimensiones mínimas establecidas según la categoría de
cada vía. Esta ocupación estará, como se indicó anteriormente, sometida a la expedición de una licencia de intervención del espacio público por parte de la Secretaría Distrital de Planeación.

- Por su parte, la creación de cajones para el estacionamiento de bicicletas o patinetas tiene un tratamiento diferente para los componentes del espacio público peatonal y para el subsistema vial. En el caso de los andenes y zonas de espacio público existe una prohibición de rango legal (Artículo 76 de la Ley 769 de 2002) para el estacionamiento de vehículos (motorizados y no motorizados) que en principio no podría ser desconocida por la autoridad local de tránsito. En cambio, por regla general, es posible el estacionamiento de bicicletas y patinetas en la malla vial, salvo que se trate de una zona prohibida, cuya determinación es en todo caso facultad de la Secretaría Distrital de Movilidad. Al no tratarse de una ocupación permanente sino transitoria (estacionamiento), los cajones no están sujetos a la expedición de una licencia de intervención del espacio público.

3.2.2.2 Normatividad relacionada con el aprovechamiento económico del espacio público

El Plan de Ordenamiento Territorial de Bogotá contempla dentro de la política de espacio público, cuyo propósito es la generación, construcción, recuperación y mantenimiento del espacio público, que se podrá acudir a formas de aprovechamiento económico del espacio público como uno de los mecanismos para garantizar su conversación y mantenimiento.

Ahora bien, el aprovechamiento económico del espacio público en la ciudad de Bogotá está permitido por el Plan maestro de espacio público (Decreto 215 de 2005) y regulado con detalle en el Marco regulatorio de aprovechamiento económico del espacio público adoptado por el Decreto 552 de 2018, teniendo como aspectos más relevantes para la implementación de un sistema de bicicletas públicas o compartidas, los siguientes:

- **Autorización.** El aprovechamiento del espacio público para la realización de actividades económicas está sometido a la expedición de una autorización o permiso, en el cual se debe definir la retribución económica a cargo del particular. Si bien el Artículo 21 el Decreto 215 de 2005 considera los permisos como forma de autorización del aprovechamiento, el Consejo de Estado ha indicado que de acuerdo con lo establecido en el Decreto 215 de 2005, este debe ser autorizado mediante contrato. Si bien el Artículo 21 el Decreto 215 de 2005 considera los permisos como forma de autorización del aprovechamiento, el Consejo de Estado ha indicado que de acuerdo con lo establecido en el Decreto 215 de 2005, este debe ser autorizado mediante contrato.

- **Actividades y espacios permitidos.** El marco regulatorio (Decreto 552 de 2018, Artículo 10) define taxativamente las actividades económicas y los elementos del espacio público sobre los cuales se puede dar el aprovechamiento. Tratándose del alquiler de vehículos de micromovilidad (patinetas y bicicletas), el aprovechamiento sólo puede llevarse a cabo sobre la malla vial y no en los

otros componentes del sistema de espacio público construido (parques, alamedas, andenes), ni en la estructura del sistema de transporte masivo.

c. **Competencia para autorizar el aprovechamiento.** La competencia para autorizar el aprovechamiento económico se da en función del elemento del espacio público ocupado y no de la actividad económica desplegada, de manera que la Secretaría distrital de movilidad solo tiene competencia para autorizar el aprovechamiento sobre la malla vial, mientras que la autorización en parques, plazoletas, alamedas y red de andenes está a cargo del IDU y los espacios contiguos al sistema de transporte masivo se encuentra a cargo de Transmilenio S.A. No obstante, esta limitación es subsanable en tanto el párrafo 4 del Artículo 11 permite a las entidades administradoras entregar los elementos del espacio público a otra entidad con el fin de integrar y hacer sostenible la actividad de aprovechamiento.

d. **Retribución económica.** Por regla general, todo aprovechamiento está sometido al pago anticipado de una retribución económica, aun cuando es posible eximir aquellas actividades que representen un beneficio directo para la ciudad. De igual manera, la retribución puede ser en dinero, mixta o en especie, está última deberá consistir en actividades directamente relacionadas con la generación, sostenimiento y rehabilitación del espacio público.

3.2.2.3 Normatividad relacionada con la publicidad exterior visual

La publicidad exterior visual en Bogotá está regulada por el Acuerdo 01 de 1998 y Acuerdo 12 de 2000, compilados por el Decreto distrital 959 de 2000 en los cuales se establecen las condiciones y lineamientos para la instalación de publicidad en los diferentes elementos del espacio público, la cual estará sometida a la expedición de una autorización por parte de la Secretaría Distrital de Ambiente.

El régimen de publicidad exterior visual de Bogotá define de manera taxativa los elementos y lugares en que es permitida la publicidad exterior visual, de manera que se entenderá prohibida la instalación de publicidad en elementos, lugares o condiciones diferentes a las establecidas en el Decreto (artículo 29). Sobre el alcance de las restricciones en materia de publicidad exterior visual, se encuentra que en principio la Ley 140 de 1994 contempló que solo se podría restringir la publicidad en los lugares o elementos que estuviera expresamente prohibida, norma que fue declarada inexequible por la Corte Constitucional\(^\text{17}\) al considerar que el legislador no podía usurpar la competencia de los concejos municipales en relación con la protección del patrimonio ecológico local. En otras palabras, si bien el legislador establece unas reglas generales en relación con la publicidad, son las entidades territoriales quienes tienen la facultad final de determinar las condiciones, límites y restricciones a la publicidad en aras de proteger el derecho colectivo al ambiente sano y conservar el patrimonio local.

En este sentido se tiene que, si bien el artículo 3 del Decreto 959 de 2000 permite la instalación de publicidad en el amoblamiento urbano, en el listado que se presenta de forma taxativa no se incluyen elementos relacionados con los servicios de movilidad en bicicleta (estaciones de bicicletas compartidas), así como tampoco se permite expresamente en vehículos no motorizados como las bicicletas.

3.2.3 Análisis de factibilidad de implementar fuentes alternativas de ingreso

De acuerdo con la solicitud hecha por la Secretaría Distrital de Movilidad el análisis de factibilidad de fuentes alternativas para el sistema de bicicletas públicas y/o compartidas de Bogotá se realiza frente a la posibilidad de vincular un tercero patrocinador y explotar económicamente la publicidad en los elementos del sistema. Así, según la normatividad local vigente, así como la situación jurídica del distrito frente a derechos de terceros, se tiene lo siguiente:

a. **Posibilidad de instalar publicidad en relación con la normatividad vigente.** En principio la posibilidad de instalar paneles publicitarios o vincular la marca de un tercero patrocinador en los elementos del sistema está limitada porque el decreto 959 de 2000 no permite la instalación de publicidad exterior visual en bicicletas, ni en las estaciones del sistema. No obstante, existe la posibilidad de superar la dificultad emprendiendo las siguientes acciones:

- Solicitar a la entidad competente (Taller del espacio público de la Secretaría Distrital de Planeación) incluir las estaciones de bicicletas compartidas dentro de los elementos constitutivos de mobiliario urbano, con el fin de que se entiendan incluidos en el listado de elementos donde es permitida la instalación de publicidad que trata el artículo 3 del decreto 959 de 2000. Este tratamiento sólo puede darse a las estaciones y no a las bicicletas toda vez que estas son vehículos y no mobiliario urbano.

- Solicitar a la Secretaría Distrital de Ambiente que la ubicación de la marca del sistema en las estaciones y bicicletas usando los signos distintivos de un patrocinador (nombre, colores) no sea considerado publicidad exterior visual en términos del Decreto 959 de 2000.

b. **Posibilidad de instalar publicidad en relación con derechos de terceros.** Frente a la existencia de derechos de terceros sobre la explotación de la publicidad exterior visual en el espacio público y/o mobiliario urbano de la ciudad se tiene que el Departamento Administrativo de la Defensoría del Espacio Público celebró el contrato de concesión 110-00129-186-0-2020 con la empresa Equipamientos urbanos nacionales de Colombia S.A.S que tiene como objeto la realización del diseño, fabricación, suministro, instalación, actualización, mantenimiento, operación, traslado y la reposición del mobiliario urbano de Bogotá, D.C., así como su financiación. Este contrato de concesión, que tiene como forma de retribución de la inversión privada el derecho a explotar económicamente la publicidad exterior visual que se instale en el mobiliario urbano estableció un derecho de
exclusividad a favor del concesionario en relación con la posibilidad de instalar publicidad, al incluir la siguiente obligación a cargo de la entidad concedente (DADEP):

“Cláusula décima primera. Obligaciones del DADEP. – Serán a cargo del DADEP:

4) Garantizar que no otorgará permiso u autorización alguna dentro del ámbito de sus competencias o suscribirá negocio jurídico alguno que implique la instalación de publicidad sobre el mobiliario urbano objeto de este Contrato”

Sobre el alcance de esta exclusividad y su efecto en la posibilidad de otorgar a otros particulares la instalación de publicidad en las estaciones del SBC como elementos del mobiliario urbano es necesario determinar (i) si el mobiliario urbano objeto del contrato de concesión se refiere a la totalidad de elementos que se instalan en el espacio público de la ciudad o solo aquellos bajo la competencia del DADEP y (ii) si la obligación de no suscribir negocios jurídicos sólo obliga al DADEP o a toda la administración distrital.

(i) En relación con el mobiliario urbano objeto de la concesión se observa en el texto del contrato una discordancia entre el objeto contractual y la definición contenida en la cláusula primera. Mientras en la cláusula segunda se indica que la concesión recae sobre “el mobiliario urbano de Bogotá D.C.” en el artículo previo se define el mobiliario urbano como “el conjunto de elementos dispuestos a instancias del DADEP para el servicio, uso y disfrute del público y que hacen parte del medio ambiente urbano y del espacio público de la ciudad. Así como también los que ofrecen información, orientación y mejores condiciones de seguridad, tranquilidad e higiene, en los términos del artículo 3 del Decreto 959 de 2000” (Subraya fuera de texto). Por su parte el anexo técnico que hizo parte del proceso de licitación DADEP-LP-494-2019 contiene la siguiente definición: “Conjunto de elementos dispuestos a instancias de la administración para el servicio, uso y disfrute del público y que hacen parte del medio ambiente urbano y del espacio público de la ciudad. Así como también los que ofrecen información, orientación y mejores condiciones de seguridad, tranquilidad e higiene. (Artículo 3 Decreto 959 de 2000)” (subraya fuera de texto).

Se tiene así una contradicción entre la cláusula primera del contrato (definiciones) y la cláusula segunda (objeto) y el anexo técnico del proceso de licitación, la cual, en aplicación de la vigésima séptima sobre interpretación del contrato, debe resolverse de manera que prevalezca el

18 Contrato de concesión 110-00129-186-0-2020.
Cláusula vigésima séptima. Interpretación del contrato. - Las cláusulas del Contrato y los documentos que hacen parte de él se interpretarán conforme lo determina el artículo 26 de la Ley 80 de 1993, para lo cual se tendrá en cuenta en orden de prelación siguiente:

(i) El pliego de condiciones y los Anexos Técnico y Financiero
(ii) El contrato
alcance del objeto contractual, esto es, que la obligación de garantizar exclusividad en la instalación de publicidad recae sobre todos los elementos del mobiliario urbano de la ciudad.

(ii) El DADEP es un departamento administrativo perteneciente al sector central de la administración distrital y que, de conformidad con el Acuerdo 257 de 2006, tiene autonomía administrativa y financiera. Esto significa que su capacidad de contratación se da en virtud de dicha autonomía y no de una delegación por parte del alcalde o la alcaldesa mayor. NOTA: La relevancia de este asunto y el riesgo jurídico que representa para la administración lleva a la necesidad de elevar una consulta ante el DADEP y el grupo de prevención del daño antijurídico de la Secretaría jurídica del distrito.

Dada la relevancia de este asunto y el riesgo jurídico que puede representar para la administración, se solicitó concepto jurídico al DADEP, en los siguientes términos:

“Consulta: con ocasión del contrato de concesión 110-00129-186-0-2020 celebrado entre el DADEP y EQUIPAMIENTOS URBANOS NACIONALES DE COLOMBIA S.A.S. EUCOL, ¿La empresa EUCOL tiene exclusividad en la explotación económica de todo el mobiliario urbano de Bogotá o es viable jurídicamente que el operador de un sistema de vehículos de micromovilidad de uso compartido puede tener publicidad en el mobiliario de sus estaciones?

Respuesta: En el contrato de concesión 110-00129-186-0-2020 no se dejó estipulada exclusividad de explotación económica en la totalidad del mobiliario que tiene el distrito capital o llegase a tener, sin embargo, el numeral 4 de la cláusula DÉCIMA PRIMERA. OBLIGACIONES DEL DADEP, se señala:

4) Garantizar que no se otorgará permiso u autorización alguna dentro del ámbito de sus competencias o suscribirá negocio jurídico alguno que implique la instalación de publicidad sobre el mobiliario urbano objeto de este contrato.

De acuerdo con lo anterior, la restricción existente es sobre el mobiliario objeto del mismo contrato de concesión, sin embargo, es importante que los proyectos que se gestionen a nivel distrital que tengan como contraprestación al privado explotación comercial mediante publicidad se armonicen para que no se genere una posible afectación de los ingresos que, como usted lo manifiesta son la base para la sostenibilidad financiera de este tipo de proyectos o contratos, con los cuales se logra garantizar el cumplimiento de las obligaciones de mantenimiento del mobiliario a cargo, entre otras obligaciones.

Teniendo en cuenta lo explicado, aunque no existe restricción por “exclusividad” se deben analizar otros factores de incidencia económica para la explotación de publicidad que no afecte los intereses de la administración distrital”.

(iii) La propuesta del Concesionario, en lo que no contradiga a los documentos litados en los numeral (i) y (ii) de esta cláusula.

Parágrafo primero. En caso de discrepancia entre el Contrato y sus Anexos, el Manual de Contratación y la Cartilla de Mobiliario Urbano de la Taller del Espacio Público, prevalecerá el Contrato y el Anexo Técnico, y entre estos dos últimos el Anexo Técnico, de conformidad con lo establecido De acuerdo con lo establecido debe resolverse. En caso de presentarse alguna contradicción dentro de un mismo documento, prevalecerá lo reglado en el numeral, párrafo o texto posterior".
Así las cosas, sobre la posibilidad de incluir la explotación de publicidad y la vinculación de un patrocinio (contrato de *sponsoring*) como fuentes alternativas de ingreso, se concluye lo siguiente:

- La instalación de publicidad en paneles adheridos a las estaciones está permitida por la normatividad local en materia de publicidad exterior visual, pero para hacerlo efectivo se requiere iniciar el trámite de inclusión de las estaciones como elementos del mobiliario urbano ante el DADEP.

- La posibilidad de conceder o permitir a un particular la instalación de publicidad en paneles de las estaciones está restringida por la exclusividad otorgada al concesionario EUCOL S.A.S en virtud del contrato de concesión 110-00129-186-0-2020.

 NOTA: (Pendiente reunión DADEP y Secretaría jurídica)

- La instalación de avisos u otro formato de publicidad exterior visual en las bicicletas no es posible en virtud del artículo 29 del Decreto 959 de 2000. Para hacerlo viable es necesario presentar al concejo una propuesta de reforma o inclusión de las bicicletas como vehículos en los cuales está permitida la publicidad exterior visual. Para ello la SDM ha elaborado un proyecto de acuerdo que se presentará ante Concejo Distrital para la inclusión de las bicicletas como vehículos permitidos para la instalación de publicidad móvil.

- En aplicación de la normatividad local vigente, la vinculación de un patrocinador del sistema está sujeto a que su marca se entienda como marca del sistema y a los lineamientos que en la materia establezca la Secretaría de Ambiente.

 NOTA: (Pendiente reunión Secretaría distrital de ambiente)

3.2.4 Marco legal e institucional propuesto

Considerando lo expuesto en relación con la normatividad nacional y local, así como los instrumentos legales para la implementación y operación de un sistema de bicicletas públicas o compartidas en el marco institucional Colombia, se encuentra que, de acuerdo con las premisas dadas por la Secretaría distrital de movilidad, es posible avanzar tomando alguna de las siguientes alternativas jurídicas:

a. **Implementación de un sistema de bicicletas compartidas bajo contrato de concesión.** De conformidad con lo indicado en el presente informe en la sección de instrumentos legales para la implementación, la administración distrital tiene la posibilidad de avanzar en la implementación del sistema acudiendo al contrato estatal como herramienta esencial para el cumplimiento de sus fines. Bajo este escenario la implementación se materializa a través de un contrato de concesión que cumple con las siguientes características:

- El contrato tendrá como objeto entregar a un particular la implementación, explotación y operación de un sistema de bicicletas compartidas por su cuenta y riesgo a cambio de una remuneración, cobro de tarifa o derecho
de explotar un bien, de acuerdo con lo definido en el proceso de estructuración financiera del proyecto.

- Este escenario jurídico implica que el funcionamiento del sistema contará con el aporte de recursos públicos o, en su defecto, supondrá la viabilidad de fuentes de ingresos posibles que permiten la recuperación de la inversión: publicidad, patrocinio, tarifas.

- Dentro del contrato de concesión puede incluirse una autorización para el aprovechamiento del espacio público y su consecuente retribución económica (Decreto 552 de 2018, artículo 18.2). En caso de que el proyecto cumpla con las características de una Asociación público-privada de iniciativa pública estará exento del régimen de aprovechamiento del espacio público, en virtud de los establecido en el parágrafo del artículo 3 del Decreto 552 de 2018.

- La celebración de un contrato de concesión para la implementación de un sistema de bicicletas compartidas garantiza que es posible y coherente con el objeto contractual y naturaleza del instrumento la inclusión de obligaciones relacionadas con las características técnicas de los elementos del sistema, los niveles de servicio esperados y retribuciones especiales que persiga la administración.

b. Autorización de aprovechamiento económico del espacio público para el alquiler de bicicletas bajo un sistema de bicicletas compartidas. En este escenario jurídico la Secretaría distrital de movilidad interviene en la actividad de alquiler de bicicletas en calidad de entidad administradora del espacio público que le fue asignado en virtud del Decreto 522 de 2018 y no como autoridad reguladora de servicios de movilidad. Aun cuando es claro que el servicio de alquiler de bicicletas satisface necesidades de movilización de las personas, la Secretaría sólo cumple funciones de autoridad de tránsito y de transporte y ninguna de ellas la faculta para exigir o imponer cargas a los particulares que no son sujetos de su regulación y vigilancia.

De esta manera, la implementación del sistema de bicicletas compartidas se enmarcaría en el Decreto 522 de 2018 por el cual se adopta el marco regulatorio para el aprovechamiento económico para el espacio público, en virtud del cual se deberá conceder el permiso mediante un contrato (CAMEP) o un acto administrativo que defina la zona autorizada y se fije la retribución económica a la que haya lugar. Este escenario tiene las siguientes implicaciones:

- Tiene como objeto permitir a un particular la ocupación y el aprovechamiento económico del espacio público utilizado para el alquiler de bicicletas a cambio de pagar al Estado una retribución económica.

- La intervención de la administración supone una autorización para ejercer libremente una actividad económica en el espacio público sin intervenir en los aspectos sustanciales de esa actividad, esto es, definir
las características de los vehículos o los niveles de servicio admisibles de cara a los usuarios.

- En cuanto la administración no tiene más competencia que la dada en relación con la administración del espacio público, la exigencia de cualquier aspecto relacionado con la actividad de micromovilidad (bicicletas y patinetas) supone la regulación de las condiciones de prestación de un servicio y esto es competencia del Concejo Distrital (Constitución política, artículo 313).

A continuación, se presenta un cuadro comparativo con los dos instrumentos jurídicos posibles:

<table>
<thead>
<tr>
<th>Contrato de concesión para la implementación de un SBC</th>
<th>Autorización de aprovechamiento económico del espacio público</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resultado</td>
<td></td>
</tr>
<tr>
<td>Poner a disposición de la ciudad una oferta de bicicletas de uso público o compartido. La posibilidad de que esa oferta se ajuste a las expectativas de la administración depende del instrumento jurídico escogido: Contrato de concesión o aprovechamiento del espacio público.</td>
<td>Permitir a un particular la ocupación y el aprovechamiento económico del espacio público utilizado para el alquiler de bicicletas, a cambio de una retribución económica</td>
</tr>
<tr>
<td>Objeto del instrumento</td>
<td></td>
</tr>
<tr>
<td>Entregar la implementación, explotación y operación de un sistema de bicicletas compartidas por cuenta y riesgo de un particular (concesión) a cambio de una remuneración, cobro de una tarifa o derecho de explotar un bien</td>
<td>Garantizar que las actividades económicas que se realizan en el espacio público hagan un uso adecuado del mismo y que la utilidad se retribuya al patrimonio público de manera que haya un beneficio común</td>
</tr>
<tr>
<td>¿Cuál es el fin principal de la intervención del Estado?</td>
<td></td>
</tr>
<tr>
<td>Poner a disposición de los habitantes de la ciudad un servicio de transporte en bicicleta, que cumpla con tanta calidad de servicio y nivel de asequibilidad como el instrumento lo determine</td>
<td></td>
</tr>
<tr>
<td>¿Cuáles pueden ser las obligaciones del particular?</td>
<td></td>
</tr>
<tr>
<td>Garantizar una oferta (número mínimo y/o máximo de bicicletas y estaciones)</td>
<td>Obligaciones de conservación, mantenimiento y uso adecuado del espacio público ocupado, de manera que se garantice su integridad y libre acceso.</td>
</tr>
<tr>
<td>Garantizar disponibilidad efectiva de estaciones y bicicletas</td>
<td>Monto de la retribución económica que se debe pagar para la ciudad</td>
</tr>
<tr>
<td>Definición y calidad de canales de comunicación con el usuario Suministro de información sobre el sistema Parámetros en relación con la operación del sistema y definición de niveles de servicio permisibles</td>
<td></td>
</tr>
<tr>
<td>¿Qué función cumple el cálculo de la demanda de viajes?</td>
<td></td>
</tr>
<tr>
<td>Determinar la oferta de bicicletas requerida Fijar los niveles de servicio requeridos o esperados Estimar los ingresos proyectados del sistema (estructuración financiera)</td>
<td>Determinar la oferta requeridas y con ello fijar el número máximo de bicicletas que se podrán ubicar en el espacio público</td>
</tr>
<tr>
<td></td>
<td>Contrato de concesión para la implementación de un SBC</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>¿Es posible determinar o limitar la tarifa que se cobra al usuario por el uso del sistema?</td>
<td>Aunque podría tratarse de la tarifa de un servicio (competencia del Concejo distrital), también es posible pactar en el marco del contrato un valor a cobrar al usuario del sistema estará limitado o regulado.</td>
</tr>
<tr>
<td>Manejo de los riesgos de la actividad económica (alquiler de bicicletas)</td>
<td>Depende de la asignación de los riesgos en la definición del modelo jurídico y financiero</td>
</tr>
<tr>
<td>Exclusividad</td>
<td>Es posible garantizar exclusividad, pero no es un elemento de la esencia de la concesión</td>
</tr>
</tbody>
</table>
| ¿Puede el particular cesar la actividad en cualquier momento? | No, está obligado a prestar el servicio durante el tiempo que determine la concesión | Contrato (CAMEP): está obligado a cumplir las obligaciones relacionadas con el espacio público en el plazo fijado en el contrato.
Permiso: puede desistir del permiso de aprovechamiento en cualquier momento |
| ¿El Estado puede pedir al particular que cese la actividad en cualquier momento? | No, la administración está obligada a respetar el plazo del contrato | Contrato: En principio la administración está obligada a respetar el plazo del contrato, salvo que haga uso de los poderes exhorbitantes de la administración incluidos en todos los contratos estatales, como son la terminación, interpretación y modificación unilateral.
Permiso: No, los actos administrativos de contenido particular solo pueden revocarse a solicitud del particular o directamente en los casos taxativamente contemplados en la Ley 1437 de 2011. |
| Capacidad coercitiva de la administración (fiscalización) | Recae sobre las obligaciones del contrato, esto es, condiciones y parámetros de funcionamiento del SBC como servicio | Recae sobre la forma en que se ocupa y aprovecha el espacio público |
Contrato de concesión para la implementación de un SBC

<table>
<thead>
<tr>
<th>Consecuencias del incumplimiento</th>
<th>Autorización de aprovechamiento económico del espacio público</th>
</tr>
</thead>
<tbody>
<tr>
<td>Es posible pactar cobro de multas y penalidades en el contrato</td>
<td></td>
</tr>
</tbody>
</table>

Contrato: cobro de multas, penalidades contractuales y posibilidad de ejercer los poderes exorbitantes de la administración (terminación, interpretación y modificación unilateral).

Permiso: En cumplimiento del principio de legalidad de la sanción administrativa no hay lugar a imponer multas que no estén contempladas en la ley (sentido estricto). Solo procede la cancelación del permiso en caso de incumplimiento de obligaciones sobre el espacio público.

Sobre este último aspecto del cuadro comparativo es preciso aclarar que la cancelación del permiso como consecuencia de su incumplimiento resulta problemática en la práctica pues los actos administrativos de carácter particular solo pueden ser revocados por la administración en los casos taxativamente indicados en la ley (Ley 1437 de 2011, artículo 93), en los casos expresamente establecidos en la ley (ley en sentido estricto) o por desistimiento del particular (Ley 1437 de 2011, artículo 97).

De acuerdo con lo anterior, se recomienda a la Secretaría Distrital de Movilidad hacer una revisión a profundidad de los objetivos y expectativas perseguidas con la implementación del sistema de bicicletas públicas o compartidas, con el fin de seleccionar el instrumento jurídico más adecuado para su consecución. Por lo pronto, la recomendación del presente documento apunta a los siguientes:

a. Si antes que garantizar el funcionamiento de un sistema de transporte en bicicleta, el objetivo primordial de la administración distrital es liberalizar el mercado para la prestación de servicios de micromovilidad y regularlo solo con el de que se reduzca el impacto de la actividad en el uso del espacio público y se internalicen las externalidades negativas en favor del interés general, se recomienda optar por la autorización del alquiler de bicicletas bajo el aprovechamiento económico del espacio público regulado por el Decreto 552

19 Al respecto la Corte Constitucional ha indicado: “de acuerdo con el parámetro previsto en el artículo 29, en conjunto con el artículo 150 de la Constitución Política, compete al legislador regular los diversos procesos judiciales y administrativos, estableciendo las etapas, oportunidades y formalidades aplicables a cada uno de ellos, así como los términos para interponer las distintas acciones y recursos ante las autoridades judiciales y administrativas. Esta Corporación ha sostenido que, en atención al principio de legalidad, la descripción genérica de las conductas, las sanciones a imponer y los criterios para su determinación, deben ser previamente fijados por el legislador, pudiendo el ejecutivo mediante la expedición de actos administrativos definir los aspectos técnicos de una determinada materia... El debido proceso integrado a su vez por el principio de legalidad y de reserva legal, en lo que al derecho administrativo sancionador se refiere, establece el deber del legislador de predeterminar la sanción y, para lo cual, le corresponde indicar los aspectos relativos a su núcleo esencial, a saber: clase, término, cuantía y el tope máximo, con el fin de proporcionar al funcionario competente un marco de referencia cierto para la determinación e imposición de la sanción y a los administrados el conocimiento de las consecuencias que se derivan de su trasgresión” (Sentencia C-412 de 2015. MP: Alberto Rojas Ríos; 1 de julio de 2015).
de 2018. Dentro de este escenario, es posible optar por la autorización mediante acto administrativo o contrato tipo CAMEP, con las siguientes fortalezas y debilidades:

<table>
<thead>
<tr>
<th></th>
<th>Contrato CAMEP</th>
<th>Permiso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fortalezas</td>
<td>Mayor capacidad coercitiva gracias a la posibilidad de pactar multas contractuales</td>
<td>Mayor flexibilidad para su expedición Permite la concurrencia de múltiples actores en el mercado</td>
</tr>
<tr>
<td></td>
<td>El proceso de licitación garantiza el principio de transparencia y libre concurrencia</td>
<td></td>
</tr>
<tr>
<td>Debilidades</td>
<td>Proceso de licitación representa un desgaste mayor para la administración</td>
<td>Baja capacidad coercitiva por la posibilidad de pactar multas contractuales</td>
</tr>
</tbody>
</table>

Es preciso aclarar que frente a este propósito el contrato de concesión tiene la posibilidad de incluir la autorización del aprovechamiento económico del espacio público y el pago de una retribución, pero puede representar un mayor compromiso de la administración en relación con los riesgos propios de la actividad económica (alquiler de bicicletas).

b. Si el principal objetivo de la administración distrital es poner a disposición de la ciudadanía un sistema de transporte en bicicleta que contribuya a mejorar el acceso a modos y transporte sostenibles, se recomienda la implementación de un sistema de bicicletas compartidas bajo un contrato de concesión toda vez que es el instrumento jurídico idóneo y adecuado para hacer exigible al operador las condiciones técnicas, operativas, de calidad y de niveles de servicio esperadas por la ciudad, como son: garantizar una oferta (número mínimo y/o máximo de bicicletas y estaciones), características técnicas de las bicicletas y estaciones, determinación de canales de comunicación con el usuario, garantizar disponibilidad efectiva de estaciones y bicicletas, suministro de información sobre el sistema y parámetros en relación con la operación del sistema y definición de niveles de servicio permisibles.

El principal obstáculo que se identifica en este escenario jurídico en relación con el objetivo trazado es la viabilidad de la estructuración financiera y la disponibilidad efectiva de fuentes de ingreso alternativas para recuperar la inversión. Para superarlo se recomienda reducir las eventuales cargas u obligaciones a cargo del operador que puedan aumentar el monto de inversión operativa y de capital, así como despejar las posibilidades de explotación de actividades económicas colaterales al alquiler de bicicletas, como es la publicidad exterior visual o la vinculación de un patrocinador.

De igual manera es preciso aclarar que frente a este objetivo, el escenario jurídico del aprovechamiento económico supone pocas posibilidades de exigir o regular las condiciones sustanciales de la actividad, por cual se podría tener una actividad regularizada y permitida, pero con un alto nivel de incertidumbre sobre su calidad. Para subsanar esta debilidad la SDM ha iniciado el proceso de elaboración y presentación de un proyecto de acuerdo distrital para la
creación del servicio de micromovilidad y la entrega de facultades a la SDM para su reglamentación y autorización.

3.2.5 Instrumentos y documentos legales para la implementación y operación del sistema de bicicletas públicas o compartidas en Bogotá

De conformidad con lo planteado en el análisis de la normatividad local de Bogotá y de acuerdo con las premisas técnicas y financieras del proyecto, para avanzar en este escenario se recomienda emprender las siguientes acciones:

a. Modificar los siguientes artículos del Decreto 552 de 2018 con el fin de flexibilizar el aprovechamiento económico del espacio público:

 ▪ Artículo 10. Se debe incluir la actividad de bicicletas y patinetas en los siguientes componentes del espacio público: Alameda, plazas y plazoletas, estructuras de los diferentes modos del sistema de transporte público masivo, red de andenes, vías y pasos peatonales, sistema de parques y zonas bajo puentes peatonales y vehiculares.

 ▪ De igual manera se debe adicionar el siguiente parágrafo al artículo 10:

 Parágrafo 3. El aprovechamiento económico del espacio público para el alquiler de bicicletas y patinetas puede incluir la exhibición de la marca del sistema con sus colores y signos distintivos sin que ello configure publicidad exterior visual en términos de lo establecido en el Decreto 959 de 2000.

 ▪ Artículo 11. Incluir dentro de la competencia de la Secretaría distrital de movilidad como administradora del espacio público, los siguientes elementos del espacio público, pero únicamente para efectos de autorizar el alquiler de patinetas y bicicletas, donde la normatividad nacional y local lo permita: Alameda, plazas y plazoletas, estructuras de los diferentes modos del sistema de transporte público masivo, red de andenes, vías y pasos peatonales, sistema de parques y zonas bajo puentes peatonales y vehiculares.

 ▪ Artículo 24. Adicionar el parágrafo 2 en el sentido de permitir que la retribución en especie verse sobre acciones de interés de la administración que representen un beneficio para la ciudad y sus habitantes, con el siguiente inciso:

 “En caso de que la actividad económica desarrollada en el espacio público represente un beneficio para la ciudad y para el interés general, la retribución económica en especie podrá consistir en asumir el costo de acciones que potencien o aumenten el beneficio que se percibe por el desarrollo de la actividad, así estas no estén
estrictamente relacionadas con el sostenimiento o recuperación del espacio público”.

b. Modificar los siguientes apartes del protocolo adoptado mediante Resolución 209 de 2019

NOTA: Definiciones pendientes (retribución económica)
CARACTERIZACIÓN DEL MERCADO

Este capítulo es el resultado de una investigación sobre las principales prácticas del mercado de bicicletas públicas y compartidas, que permite identificar los factores relevantes para la definición del modelo de negocios y estrategia de operación de un sistema de bicicletas compartidas.

Se efectuó contacto con 20 expertos de diferentes empresas, entre los cuales 13 (detallados en la Tabla 5.1), manifestaron estar a disposición para contacto directo a través de una o más videollamadas, cada una de ellas con duración entre 1 y 2 horas y, en algunos casos, se contó con la participación de otros profesionales de las empresas.

En las videollamadas se recopiló información sobre las tecnologías de sistemas de bicicletas compartidas existentes y se obtuvieron costos para la adquisición de bicicletas, costos de operación y de mantenimiento, así como otros factores relevantes para la definición del modelo de negocios.

Algunas de las videollamadas también fueron utilizadas para abordar el tema regulatorio, de seguridad del sistema y aspectos sobre la retribución paga por el operador en función del aprovechamiento del espacio público. La idea es, trabajar con información más actualizada para la estructuración técnica y financiera de los sistemas de bicicletas compartidas y siempre con referencia a las prácticas que efectivamente han sido adoptadas en diferentes países del mundo.

<table>
<thead>
<tr>
<th>Contacto</th>
<th>Empresa</th>
<th>Tipo de contacto</th>
<th>País</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camilo Rueda</td>
<td>Bicycle Capital</td>
<td>Proveedor y operador</td>
<td>Colombia</td>
</tr>
<tr>
<td>Diego Caicedo</td>
<td>Biciclick</td>
<td>Proveedor y operador</td>
<td>Colombia</td>
</tr>
<tr>
<td>Diego Ospina</td>
<td>Mejor en Bici</td>
<td>Proveedor y operador</td>
<td>Colombia</td>
</tr>
<tr>
<td>Daniel Otero</td>
<td>Muvo</td>
<td>Proveedor y operador</td>
<td>Colombia</td>
</tr>
<tr>
<td>Juliana Minorello</td>
<td>Tembici</td>
<td>Operador</td>
<td>Brasil</td>
</tr>
<tr>
<td>Mariano Pérez Miñano</td>
<td>Moventia</td>
<td>Operador</td>
<td>España</td>
</tr>
<tr>
<td>Gaspar Mac</td>
<td>Smod</td>
<td>Proveedor y operador</td>
<td>Argentina</td>
</tr>
<tr>
<td>Angelo Leite</td>
<td>Sertell</td>
<td>Proveedor y operador</td>
<td>Brasil</td>
</tr>
<tr>
<td>John Ospina</td>
<td>NextBike</td>
<td>Proveedor y operador</td>
<td>Alemania</td>
</tr>
<tr>
<td>Enrique Muñoz</td>
<td>Grow</td>
<td>Proveedor y operador</td>
<td>Brasil</td>
</tr>
<tr>
<td>Rodrigo Bejarano</td>
<td>Motun Sapi</td>
<td>Operador</td>
<td>México</td>
</tr>
<tr>
<td>Henrique Cuellar</td>
<td></td>
<td>Experto</td>
<td>Colombia</td>
</tr>
<tr>
<td>Clara Vadillo Quesada</td>
<td>ITDP</td>
<td>Experto</td>
<td>México</td>
</tr>
</tbody>
</table>

4.1 Tipos de SBC existentes

De acuerdo con la información recopilada, existen actualmente diferentes tipos de sistemas de bicicletas compartidas (SBC) de acuerdo con su configuración operacional o entonces en función del tipo de tecnología utilizada para
estacionamiento de las bicicletas cuando ellas no están en uso. La tabla a seguir clasifica los sistemas existentes en 6 categorías, en función de los siguientes factores:

- Sistemas con estación o sin estación (*dockless*);
- Método de préstamo y devolución de las bicicletas: con auxilio manual de una persona encargada por la operación del sistema, o automática, a cargo del propio usuario;
- Tipo de candado para bloqueo de las bicicletas: ubicado en la estación o en la bicicleta. El sistema manual no cuenta con bloqueo a través de candado;

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Estación</th>
<th>Préstamo o devolución</th>
<th>Candado de bloqueo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>Sí</td>
<td>Manual, depende de persona encargada pela operación y control de la estación</td>
<td>No hay</td>
</tr>
<tr>
<td>Con anclaje</td>
<td>Convencional</td>
<td>Sí</td>
<td>Automática</td>
</tr>
<tr>
<td>Con anclaje</td>
<td>Simplificado</td>
<td>Sí</td>
<td>Automática</td>
</tr>
<tr>
<td>Sin anclaje</td>
<td>Estación virtual (geofencing)</td>
<td>Sí</td>
<td>Automática</td>
</tr>
<tr>
<td>Sin anclaje</td>
<td>Convencional (flotante)</td>
<td>No</td>
<td>Automática</td>
</tr>
</tbody>
</table>

Tabla 4.2: Tipos de SBC cuanto al método de parqueo y sistema de anclaje
Existen también sistemas híbridos, concebidos de manera flexible y que pueden ser configurados para operar tanto con estaciones, con estaciones virtuales (geofencing) o sin estaciones (sistema flotante). O sea, la bicicleta es la misma, pero su candado electrónico es configurado para operar de acuerdo con cada uno de los sistemas descriptos o mismo de acuerdo con más de un sistema, por ejemplo, con anclaje en estaciones o sin anclaje en áreas delimitadas.

4.2 Factores relevantes a considerar para la implementación de un SBC

Se discuten continuación los requisitos principales que los operadores y proveedores de SBC consideran como relevantes para garantizar la atractividad del negocio y el éxito en la operación del sistema

4.2.1 Cambios en el mercado de sistemas dockless

Como mencionado anteriormente, los sistemas dockless demandan menores costos de inversión inicial y pueden ser implantados de manera más rápida, factores que tornan este tipo de configuración bastante atractiva cuando comparados a los sistemas más tradicionales con operación estructurada con estaciones. Sin embargo, es fundamental tener en cuenta detalles sobre el modelo de negocios que normalmente se utiliza para la factibilidad de operación de los sistemas dockless, así como considerar cambios que han ocurrido especialmente con lo mercado de proveedores y operadores dockless.

Los sistemas dockless empezaron a ser operados en mayor número durante el año de 2017, especialmente en China y otros países del Sureste Asiático, estructurados en función de un modelo de negocios financiado por capital de riesgo de inversores privados, sin mayor participación o regulación del sector público y sin planeación para operar durante plazos más largos.

De acuerdo con Fratila20, la inversión total conocida en proveedoras y operadoras de SBC en todo el mundo ha sido incrementada de US$ 290 millones en 2016 para US$ 2.600 millones en 2017, de los cuales US$ 1.000 millones se destinaron solo a Ofo, y otros US$ 800 millones a Mobike, ambas compañías chinas. El resultado fue una disputa de estas compañías por la participación en el mercado de bicicletas compartidas, literalmente inundando las calles de las ciudades con millones de bicicletas de bajo costo, lo que resultó en densidades de bicicletas por habitante en

las ciudades chinas 37 veces mayor que la densidad media observada en ciudades que operaban SBCs en países de Europa y América del Norte.

A pesar de que los costos de operación de estos sistemas no son informados, ni los criterios para diseño de la operación de los sistemas (si hay alguno), una consulta a expertos en el tema y proveedores/operadores internacionales de SBC permite entender cómo los modelos de negocio basados en bicicletas dockless son viabilizados:

- Aparentemente, la definición del número de bicicletas es el parámetro de menor relevancia en el diseño del sistema, diferente de lo que se pasa en sistemas con mayor nivel de planeación;
- El costo de adquisición de bicicletas es relativamente bajo en China, lo que permite que se empiece un sistema con un número de bicicletas mayor que lo necesario y, posteriormente, parte de las bicicletas son redistribuidas de acuerdo con el padrón de viajes observado;
- El sistema probablemente se opera con pérdida, lo que se compensa con la valoración de la empresa operadora y también con acceso a una gigantesca base de datos de viajes de los usuarios, algo atractivo para inversionistas estratégicos interesados en información sobre hábitos y patrones de una amplia gama de usuarios del sistema;
- La factibilidad de operación de estos sistemas cuenta también con la falta de una regulación más efectiva por parte del poder público, considerando que no hay contraparte pública y que todo riesgo operativo es del privado. Por tanto, los costos de operación y, consecuentemente, la factibilidad de un negocio de riesgo es comprometida cuando el poder público establece una regulación más rígida.

Otro factor importante para tener en cuenta en el análisis de los sistemas dockless es que la continuidad de la operación del SBC es dependiente de la visión estratégica de una compañía privada, 100% financiada por capital de riesgo y, principalmente, de las decisiones de los inversionistas sobre dónde invertir este capital.

Además, este tipo de modelo de inversión no es sostenible en largo plazo y en larga escala, de manera que, en el escenario actual, las grandes proveedoras de sistemas dockless, están priorizando inversiones en mercados más consolidados de ciudades europeas y norteamericanas y en ciudades en China, reduciendo la posibilidad de inversión en SBC en ciudades de América Latina, en las cuales el potencial de ingresos tarifarios es menor. De acuerdo con datos de World Bike Sharing Map21, los percentuales de sistemas dockless cerrados en los últimos 10 años son los siguientes:

- Lime cerró la operación de 68% de sus SBCs, concentrando actualmente su operación en sistemas en Estados Unidos y Europa;
- Ofo cerró la operación de 64% de sus sistemas en Estados Unidos, Europa y otros países, manteniendo la operación sólo en China;
- Obike cerró la operación de 60% de sus sistemas y, actualmente, opera sistemas en Taiwan, Italia, España, Tailandia, Malasia y China;

● Jump cerró la operación de 21% de sus sistemas y, en mayo de 2020, fue comprada por Lime. Opera SBC en Estados Unidos, Europa, Oceania y Chile;
● Mobike cerró 5% de sus SBC, operando sistemas principalmente en China y Europa;
● Yellow fue comprada por Grin y cerró la operación de SBC en todas las ciudades de Brasil en las cuales operaba.

Por tanto, la tendencia actual es que sistemas *dockless* pasen a operar buscando rentabilidad como cualquier sistema tradicional de bicicletas compartidas, en lugar de operar con pérdida, bajo un modelo que no se configura sustentable en más largo plazo.

En este contexto, no se percibe interés de las empresas dockless que operan con este modelo de negocio que se ha observado en los años recientes en ingresas a ciudades colombianas, por ejemplo. Asimismo, es posible que empresas de menor porte, como Muvo (que ya opera en Bogotá), tengan algún interés en operar SBC en las ciudades colombianas bajo este modelo.

Además, existe la perspectiva de consolidación de SBC, con contratos, considerados como parte del sistema de transporte de la ciudad, regulados y soportados por los gobiernos de alguna manera.

4.2.2 Plazos de permiso o de contrato

La mayoría de las empresas entrevistadas buscan operar SBP con contratos de mayor duración, especialmente si son sistemas con estaciones en los cuales es necesario más tiempo para distribuir los costos iniciales de inversión (CAPEX). En este contexto, las empresas creen que sería necesario tener un contrato con duración de, no mínimo, 5 años, para garantizar la factibilidad financiera del SBC.

Mismo en caso de sistemas que operan con bicicletas *dockless* con autorización del poder público, los entrevistados consideran necesario tener autorización por plazos más largos (idealmente de, por lo menos, 5 años) para generar un compromiso comercial entre empresa y poder concedente. Por otro lado, el modelo de negocios dockless que se ha mencionado son basados en la libertad que la empresa tiene para que interrumpa la operación cuando lo considere conveniente, aunque quiere que no haya plazo límite para la operación.

Los periodos de siete y cinco años considerados en la modelación se encuentran alineados con referencias obtenidas de otros sistemas de bicicletas compartidas de medio plazo (perfil más común encontrado en el levantamiento de información), como se indica en la siguiente figura.
La figura muestra los plazos del proyecto observados en 10 sistemas, en su mayoría de América Latina. Los dos primeros sistemas, de Sorocaba y Vila Velha, tienen un plazo de proyecto más corto de hasta 3 años. Es importante señalar que, en general, se consideran plazos más cortos para un sistema en el que el operador no realiza ninguna inversión para costear el CAPEX.

Los sistemas de Río de Janeiro, Londres, Niterói, Ciudad de México, Cuenca, Buenos Aires y Lima, tienen un plazo promedio de proyecto entre 5 y 10 años. Es importante señalar que todos estos sistemas tienen diferentes características de modelo de negocio, tamaño y tecnología. Sin embargo, la mayoría presenta modelos de mediano plazo.

París, por su parte, se destaca de las demás ciudades por presentar un prolongado período de proyecto de casi 25 años ya que tiene un sistema muy robusto y con muchas bicicletas eléctricas, lo que hace que el CAPEX sea muy importante. Por lo tanto, necesita de un tiempo más amplio.

4.2.3 Patrocinios y publicidad

De acuerdo con las entrevistas y en función de lo que indican otros modelos existentes, los costos de operación de cualquier SBC no pueden cubrirse solamente con el monto recaudado de la tarifa. La factibilidad financiera de un SBC sólo es posible si ingresos alternativos son considerados, como publicidad, patrocinio, subvención pública o un mixto de estos.

Aunque el patrocinio representa un ingreso alternativo al SBC, resulta en algunas restricciones o condiciones que definen como el sistema será estructurado. Considerar publicidad como fuente alternativa de ingresos acaba por definir también la forma de operación del SBC. Tembici, por ejemplo, solo opera sistemas con
estaciones que tienen tótems que son utilizados también para publicidad de la empresa patrocinadora.

La necesidad de patrocinio también define la duración del contrato de operación del sistema. En general, las áreas de marketing de las empresas comprometen patrocinios por periodos entre 3 y 5 años, siendo más raros períodos más largos. Además, debe ser considerado al definir la duración del contrato que se necesita hasta 4 meses para buscar un patrocinio para el sistema.

El patrocinio con áreas de sostenibilidad de empresas privadas puede dar preferencia a sistemas con sistemas más organizados y estructurados, con estaciones, evitando sistemas más flexibles y sin estaciones. A pesar de que sistemas dockless se presenten con mayor facilidad de implementación, en algunos casos tienen la imagen asociada al chatarrerío de bicicletas, además de generar una serie de impactos en espacio público debido a la falta de organización o regulación, aspectos que, evidentemente, dañan la imagen de sostenibilidad esperada para un SBC.

Otra limitación que se debe tener en cuenta es la dificultad de que patrocinio y publicidad sean factibles en sistemas donde hay más de una empresa operando. Además, el operador puede tener restricciones de aumentar o disminuir el tamaño del SBC por no poder cambiar la marca patrocinadora o tener más de una, o entonces operar con patrocinio en las bicicletas cerca de paraderos de buses que ya cuentan con otro tipo de patrocinio o publicidad (caso de Bogotá).

Por otro lado, debe ser considerada la posibilidad que el gobierno encuentre el patrocinio en el caso de haber una licitación para permiso de operación del SBC.

4.2.4 Retribución por aprovechamiento del espacio público

La retribución por aprovechamiento del espacio público corresponde a un valor que la empresa debe pagar al poder público por utilizar el espacio público para implantación y operación del SBC. Las empresas entrevistadas entienden que este tipo de retribución representa un doble cobro, pues un SBC ya genera beneficios a la ciudad, como la reducción de las emisiones de los vehículos motorizados y promoción del sistema de transportes colectivo al mejorar la cobertura de la última milla del viaje.

Además, como los SBCs no son factibles solo con tarifas y requieren normalmente una subvención por parte del poder público, no hace mucho sentido el cobro de una retribución simultánea a una subvención pública. Las empresas prefieren otros medios de retribución con costos menos elevados, tales como el mejoramiento urbano y de la ciclo-infraestructura.

Aunque exista cobro de retribución en sistemas con patrocinio (ejemplo de Tembici en São Paulo, Brasil), el valor cobrado debe ser bajo o suficiente para ser atractivo para las empresas. Sin embargo, es importante tener en cuenta que la retribución por aprovechamiento del espacio público solo es posible en sistemas que tienen su operación financiada parcialmente por patrocinio, lo que limita la operación del SBC al tipo y número de empresas que operan bajo este modelo de negocios.

También es importante considerar que, para que una retribución no sea una barrera al interés de las empresas en operar el SBC, el poder público debe considerar algunos
beneficios como contrapartida al operador, tales como la inversión pública en comunicación en favor del sistema, la inversión en espacio público para las bicicletas y, principalmente la inversión en seguridad para las bicicletas y equipamientos del SBC.

4.2.5 Competición en el mercado

Otro tema considerado por las empresas proveedoras y operadoras de SBC es la operación simultánea de más de una empresa en una misma área de una ciudad, lo que resulta en competición en el mercado.

De manera general, la competición no es considerada un problema si el poder público presenta garantías mínimas, especialmente en el caso de sistemas dockless con operación en plazos más cortos. Por otro lado, sistemas más estructurados y con mayor duración pueden tener alguna dificultad para operar en régimen de competencia con otras empresas. A continuación, son listados los factores que dificultan el éxito de los SBC en régimen de competencia:

- La existencia de cajones o de estaciones para la delimitación de los espacios de cada empresa puede dificultar la organización de cada subsistema, así como su operación si no hay reglas claras por parte del poder público;
- La competencia entre empresas dificulta los modelos de negocios parcialmente financiados por patrocinios.

Además, algunas empresas operadoras consideran que el SBC debe ser tratado como cualquier otro sistema de transporte público y, por tanto, se caracterizan mucho más como un monopolio natural, en lo cual la competencia puede existir en la fase de licitación, pero después el derecho de exploración del servicio es limitado a uno solo operador.

4.2.6 Resumen de los principales factores

A continuación, se presenta un resumen de los factores presentados anteriormente, para que el poder público tenga en cuenta como soporte para la decisión sobre el modelo de negocios y de operación a ser considerado para el éxito de su sistema:

- El escenario actual de permisos no es atractivo para los operadores internacionales de sistemas dockless, que actualmente concentran su operación en mercados más estructurados y de mayor rentabilidad en Estados Unidos, Europa y China;
- De manera general, los sistemas de bicicletas compartidas, especialmente aquellos que operan con estaciones, necesitan tener un plazo más largo para garantizar su factibilidad financiera. Los operadores han afirmado que son necesarios por lo menos 5 años para una concesión que incluye la adquisición de estaciones y bicicletas por el operador privado;
- De igual forma, con operación en plazos de 5 o más años, los SBC no son sustentables solamente con ingresos tarifarios, y requieren ingresos alternativos, como patrocinio, publicidad o subvención por parte del poder público;
En el contexto de un sistema que requiere montos considerables de ingresos de patrocinios (subsidios), el cobro por aprovechamiento del espacio público es difícil de ser considerado. Caso sea adoptada la retribución por el uso del espacio público debe ser lo más baja posible y, siempre que sea posible, asociada a beneficios y garantías (comunicación, seguridad, por ejemplo) para que no sea vista como una barrera por parte de los operadores. Pagos anticipados o como un porcentaje de los ingresos brutos son, definitivamente, una barrera;

Para permisos, nos parece más probable que se presenten actores locales (si se presentan) para una operación razonablemente pequeña sin mucha expectativa de generar utilidad. Estos actores tienen sus restricciones para inversión, entonces dependen de la capacidad de encontrar patrocinio para implementar sus sistemas también.
ANEXOS

- **Anexo 1 – Formulario de la Encuesta de Preferencia Declarada:**
 - PDF con el formulario de la encuesta;
- **Anexo 2 - Banco de Datos del Experimento de Preferencia Declarada:**
 - XLSX con las bases de datos procesadas;
- **Anexo 3 - Polígonos de Operación y Demanda Estimada:**
 - SHP de Zonas de Análisis de Transporte (ZAT) de la Encuesta de Movilidad de 2019;
 - KMZ de alternativas de polígonos de operación de bicicletas compartidos presentados en este informe
 - CSV con las demandas de viajes por bicicleta por ZAT de origen.

ITDP (2018a) *Bike Share Planning Guide*.

NUMO New Urban Mobility Alliance (2019). *Recomendaciones sobre la regulación de la micromovilidad*

SEMOVI (2019). *Puntos de arribo para los sistemas de transporte individual sustentable (SiTIS)*. Disponible en: https://datos.cdmx.gob.mx/explore/dataset/puntos-de-arribo-sitis/map/?location=12,19.38856,-99.11797

C40 Cities Climate Leadership Group
3 Queen Victoria Street, City
London EC4N4TQ
United Kingdom

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH
Postdamer Platz 10
10785 Berlin
Germany

E contact@c40cff.org
W c40cff.org

Funding partners:

Implementing agencies: